A brief introduction to what (un-)sustainability could be in the context of ICT infrastructures, followed by a list of selected reading materials on the many aspects of sustainability in computing. I have good intentions to keep this updated.

Sustainable … what?

Your circular-economy electronics store around the corner. When do we get there?
Your circular-economy electronics store around the corner. When do we get there?

We’ve all been there: after 10 years of operation with pretty much no hiccups, your phone breaks and you think it’s finally time for a new device, not another repair. You walk through that busy shopping street (this story is set either before or after the COVID-19 apocalypse), passing by display windows with sustainable clothing and organic produce, till you reach the circular-economy electronics store. And now what? Too much of a choice. Do you take the elegant wooden design or do you go for steel? Luckily you don’t have to worry too much about the technical specs as they are all upgradable and fully modular devices. Neither do they weigh heavily on your consciousness – all those phones are produced from fairly mined and fairly traded materials, 99% recyclable, and they come with service contracts for free repairs and and software updates to guarantee an almost infinite lifespan.

Doesn’t sound familiar? Well, that’s the point. Why is it that sustainable products across many sectors are readily available, and producers and stores are happy to advertise these products as “sustainable”, “green”, “fair”, whatever, while in the ICT world the average consumer hardly thinks about these product qualities? What does it mean for a computer or a digital service to be sustainable anyway? Are there labels for sustainable ICT, or maybe something like the EC regulation on organic production and labelling of organic products, but for phones, printers and laptops that do not harm people and planet?1 And why are technology conferences full of talks that do not discuss the social and environmental impact of technology, or how to reduce these impacts?

What we vaguely understand is that the electronics sector has a huge footprint in terms of materials and energy consumption, causing environmental destruction and human exploitation in the production, use, and disposal of devices and services. In the context of sustainability, we also have to consider inequality and discrimination that is created or being promoted by the use of technology. And we know that these problems are expected to grow, proportionally to the growth of the ICT sector. Fortunately, there are also positive stories – the Fairphone and some other products, for example, ranked pretty high in the 2017 Greenpeace Guide to Greener Electronics, and a 2020 episode of Eco Africa - The Environment Magazine mentions positive developments in tackling e-waste.

Overall, I am convinced that consumers and engineers still need to learn a lot about sustainability aspects of electronics products. But the one question that all domains of our economy have to address, rather sooner than later, is that of defining the means by which we assess whether a technology (or anything else) will bring us forward as a society, and which allows us to justify (or not) a investment of scarce resources within the limits of the planetary boundaries, beyond the paradigm of generating profits and perpetual growth. Or, as Jason Hickel puts it:

That is, instead of either ignoring harmful impacts or inflationary sticking a “sustainable” sticker on everything, we must ask what it is that we want to sustain, and for whom. It is very well possible that technologies cannot actually be (un-)sustainable by itself, simply because technology is not a vital societal function in itself. Optimising technology to minimise emissions or material consumption is all cool and important, but neither does it result in “sustainable technology,” nor can it be the research and development target of our industry sector.

As a society, however, we can sustain ourselves, and technology can be the tool to achieve this sustainability in many domains. To get there, we must ask ourselves how our technology work aims to support people and land in times of the climate emergency, the ecological breakdown, and a myriad of other social and humanitarian crisis. Does our technology support vital societal functions? Does it do so inclusively? Is it the cheapest and most impactful way to do so? How does it address potential rebound effects? Does our work strive to end fossil fuel extraction and colonialism, and possibly growth-based economics altogether?

These are the questions of our times, the ones everyone must consider. As engineers we are actively shaping the future of humanity, we work in a highly political domain, and thus it must be our obligation to develop strong ethics and to strive for the wellbeing of every human being, present and future.

How I got there

Speaking on Sustainable ICT at QA&Test, October 2019 in Bilbao.
Speaking on Sustainable ICT at QA&Test, October 2019 in Bilbao.

In late 2019 I was asked by the QA&Test2 conferences to give a keynote on this topic. Apparently I’ve been ranting enough about the devastation we cause with technology deployment, and people wanted to know what it is all about. I got scared and intrigued at once. I never heard a talk to outline the dirty downside of ICT at an ICT conference, and now I was to be the one to give such a talk. Out came a one-hour presentation with the title “Defining Environmental Sustainability in ICT”, which was followed by a long Q&A and many discussions with conference participants afterwards, over a beer, or at the breakfast table the next mornings. Apparently I had struck a responsive chord with some people, though we all couldn’t come up with easy answers about how to resolve this, at least not in the context of our current economy. But QA&Test followed up on the interest in the topic, and in 2020 we invited Tapani Jokinen to talk about sustainable design for electronics products.

I had heard about Tapani’s work before already, and finally followed one of his workshops at an extraordinary event in that pandemic summer of 2020: the first SICT: Summer School on Sustainable ICT3 at the University of Louvain-la-Neuve, Belgium. SICT was extraordinary in at least two aspects: it was the first time for me to meet a room full of people who all shared concerns about (different) sustainability aspects of the ICT, and it was the first real-life event I attended since the first wave of the pandemic in Europe. Personally I dubbed this iteration of SICT the “summer school on sustainable mining” – yes, I was hoping for more of a focus on software, services and security – but nevertheless it was eye-opening. A few days after that week of lectures, workshops and discussions, we started compiling a zotero library4 on sustainable ICT, to give people an entry point to this field of research. Below you find a selection of key publications from this bibliography, followed by the full list.

Please get in touch if you feel that something is missing. I do not claim that these resources are useful for everyone, or that they represent the the most influential works of sustainability research in ICT. Yet, it’s a collection of literature that helped me personally to find my way into this field, and I very much hope that it is useful for you.

Key Publications

Start Here

  • Cook, G., & Jardim, E. (2017). “Guide to Greener Electronics 2017.” Greenpeace. Retrieved from https://www.greenpeace.org/usa/reports/greener-electronics-2017/
    Why read it? The report gives a concise overview of the different facets of sustainability in the context of electronics products. A range of companies are ranked along a spectrum of criteria that you might not have thought of before.
  • Gossart, C. (2015). “Rebound effects and ICT : a review of the literature.” ICT innovations for sustainability, Advances in Intelligent Systems and Computing. Retrieved from https://doi.org/10.1007/978-3-319-09228-7_26
    Why read it? Across sectors and including ICT, we have witnessed important gains in materials and energy efficiency over the last years. Importantly, these gains did not lead to a global drop in resource usage or emissions, rather to the contrary, overall consumption is increasing. This paper discusses the “rebound effects” that lead to increased consumption when consumption becomes effectively cheaper.

Impact & Life-Cycle Assessment

  • Lange, S., Pohl, J., & Santarius, T. (2020). “Digitalization and energy consumption. Does ICT reduce energy demand?” Ecological Economics, 176, 106760. doi:10.1016/j.ecolecon.2020.106760
    Why read it? “These results can be explained by four insights from ecological economics: (a) physical capital and energy are complements in the ICT sector, (b) increases in energy efficiency lead to rebound effects, (c) ICT cannot solve the difficulty of decoupling economic growth from energy, (d) ICT services are relatively energy intensive and come on top of former production.”
  • Krumay, B., & Brandtweiner, R. (2016). “Measuring the environmental impact of ICT hardware.” International Journal of Sustainable Development and Planning, 11(6), 1064–1076. doi:10.2495/SDP-V11-N6-1064-1076
    Why read it? This work outlines various approaches to measure impacts of ICT hardware as well as their application in practice. The authors identify different indicators and brings these indicators to to the attention of experts from companies, to assess these approaches in terms of practicability, significance and value for practice.
  • Yi, L., & Thomas, H. R. (2007). “A review of research on the environmental impact of e-business and ICT.” Environment International, 33(6), 841–849. doi:10.1016/j.envint.2007.03.015
    Why read it? While already from 2007, this paper provides a comprehensive review of the state of the art of how e-business/ICT affects the environment. The paper explains why traditional assessment approaches are insufficient to accommodate the digital technology revolution and cannot accommodate the challenge of measuring the impacts of ICT on environmental sustainability.

Sustainable Materials for ICT

  • World Economic Forum. (2019). “A New Circular Vision for Electronics Time for a Global Reboot,” (January), 24–24. Retrieved from http://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf
    Why read it? “In the mining, manufacturing, transport, retail, consumption and disposal of electronics, there are vast amounts of wasted resources and the system has several negative impacts. Each year, approximately 50 million tonnes of electronic and electrical waste (e-waste) are produced, equivalent in weight to all commercial aircraft ever built; only 20% is formally recycled. If nothing is done, the amount of waste will more than double by 2050, to 120 million tonnes annually. […] There is also an opportunity to build a more circular electronics system, one in which resources are not extracted, used and wasted, but valued and re-used in ways that create decent, sustainable jobs.”
  • Friederich, P., Fediai, A., Kaiser, S., Konrad, M., Jung, N., & Wenzel, W. (2019). “Toward Design of Novel Materials for Organic Electronics.” Advanced Materials, 31(26), 1808256. doi:10.1002/adma.201808256
    Why read it? This article gives a bit of an outlook on the search for new organic materials to build electronic components. These materials have potential to be the basis of more sustainable ICT ecosystems. They are already used in applications, such as displays in mobile devices, and being intensely researched for other purposes, such as organic photovoltaics, large-area devices, and thin-film transistors.
  • Wäger, P. A., Hischier, R., & Widmer, R. (2015). “The Material Basis of ICT.” In L. M. Hilty & B. Aebischer (Eds.), ICT Innovations for Sustainability (Vol. 310, pp. 209–221). Cham: Springer International Publishing. doi:10.1007/978-3-319-09228-7_12
    Why read it? Storing and processing information will always need a material basis. This paper studies both the “upstream (from mining to the product) and the downstream (from the product to final disposal) implications of the composition of an average Swiss end-of-life (EoL) consumer ICT device from a materials perspective.”

Operational Impact of ICT

  • Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G., & Friday, A. (2021). “The climate impact of ICT: A review of estimates, trends and regulations.” arXiv:2102.02622 [physics]. Retrieved from http://arxiv.org/abs/2102.02622
    Why read it? A comprehensive and up-to-date survey of ICT’s current and projected climate impacts. “There are pronounced differences between available projections of ICT’s future emissions. These projections are dependent on underlying assumptions that are sometimes, but not always, made explicit - and we explore these in the report. Whatever assumptions analysts take, they agree that ICT will not reduce its emissions without a major concerted effort involving broad political and industrial action.”
  • Pärssinen, M., Kotila, M., Cuevas, R., Phansalkar, A., & Manner, J. (2018). “Environmental impact assessment of online advertising.” Environmental Impact Assessment Review, 73, 177–200. doi:10.1016/j.eiar.2018.08.004
    Why read it? “The online advertising ecosystem resides in the core of the Internet, and it is the sole source of funding for many online services. Therefore, it is an essential factor in the analysis of the Internet’s energy footprint. As a result, in 2016, online advertising consumed 20-282 TWh of energy. In the same year, the total infrastructure consumption ranged from 791 to 1334 TWh. With extrapolated 2016 input factor values without uncertainties, online advertising consumed 106 TWh of energy and the infrastructure 1059 TWh.”
  • Belkhir, L., & Elmeligi, A. (2018). “Assessing ICT global emissions footprint: Trends to 2040 & recommendations.” Journal of Cleaner Production, 177, 448–463. doi:10.1016/j.jclepro.2017.12.239
    Why read it? This is probably the most rigorous analysis to assess the global carbon footprint of the overall ICT industry, including the contribution from the main consumer devices, the data centres and communication networks. The paper makes predictions, suggesting that “if unchecked, ICT greenhouse gas emissions relative contribution could grow from roughly 1–1.6% in 2007 to exceed 14% of the 2016-level worldwide greenhouse gas emissions by 2040, accounting for more than half of the current relative contribution of the whole transportation sector.”

Sustainable Software

  • Lago, P., Verdecchia, R., Condori-Fernandez, N., Rahmadian, E., Sturm, J., van Nijnanten, T., Bosma, R., et al. (2021). “Designing for Sustainability: Lessons Learned from Four Industrial Projects.” In A. Kamilaris, V. Wohlgemuth, K. Karatzas, & I. N. Athanasiadis (Eds.), Advances and New Trends in Environmental Informatics (pp. 3–18). Cham: Springer International Publishing. doi:10.1007/978-3-030-61969-5_1
    Why read it? “We report the results of practitioners applying the Sustainability-Quality Assessment Framework (SAF) to four industrial cases. The results show that the SAF helps practitioners in (1) creating a sustainability mindset in their practices, (2) uncovering the relevant sustainability-quality concerns for the software project at hand, and (3) reasoning about the inter-dependencies and trade-offs of such concerns as well as the related short- and long-term implications. Next to improvements for the SAF, the main lesson for us as researchers is the missing explicit link between the SAF and the (technical) architecture design.”
  • Lago, P., Koçak, S. A., Crnkovic, I., & Penzenstadler, B. (2015). “Framing sustainability as a property of software quality.” Communications of the ACM, 58(10), 70–78. doi:10.1145/2714560
    Why read it? A short paper to assess the environmental dimension of software performance on two concrete examples. The assessment framework helps draw a more comprehensive picture of the relevant quality dimensions and, as a result, improve decision making.

Sustainable Security

  • (missing reference)
    Why read it? Keeping a device or a software secure over a long period of time – think of decades – is difficult, mostly because the techniques used in the product will be outdated and known to be vulnerable to malicious intruders rather soon. This paper outlines a path towards designing products that remain dependable for the future.

Crypto Currencies & Bitcoin

  • Jiang, S., Li, Y., Lu, Q., Hong, Y., Guan, D., Xiong, Y., & Wang, S. (2021). “Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China.” Nature Communications, 12(1), 1938. doi:10.1038/s41467-021-22256-3
    Why read it? “By investigating carbon emission flows of Bitcoin blockchain operation in China with a simulation-based Bitcoin blockchain carbon emission model, we find that without any policy interventions, the annual energy consumption of the Bitcoin blockchain in China is expected to peak in 2024 at 296.59 Twh and generate 130.50 million metric tons of carbon emission correspondingly.”
  • de Vries, A. (2021). “Bitcoin boom: What rising prices mean for the network’s energy consumption.” Joule, 5(3), 509–513. doi:10.1016/j.joule.2021.02.006
    Why read it? “These estimates reveal that the record-breaking surge in Bitcoin price at the start of 2021 could result in the network consuming as much energy as all data centers globally, with an associated carbon footprint matching London’s footprint size. Beyond these environmental impacts, the production of specialised mining devices might exacerbate the global shortage of chips, which could effect the ability to work from home, the economic recovery after the COVID-19 crisis, and the production of electric vehicles.The increasing popularity of mining in countries like Iran could even threaten international safety.”
  • Köhler, S., & Pizzol, M. (2019). “Life Cycle Assessment of Bitcoin Mining.” Environmental Science & Technology, 53(23), 13598–13606. doi:10.1021/acs.est.9b05687
    Why read it? “This study applied the well-established Life Cycle Assessment methodology to an in-depth analysis of drivers of past and future environmental impacts of the Bitcoin mining network. It was found that, in 2018, the Bitcoin network consumed 31.29 TWh with a carbon footprint of 17.29 MtCO2-eq, an estimate that is in the lower end of the range of results from previous studies. The main drivers of such impact were found to be the geographical distribution of miners and the efficiency of the mining equipment. In contrast to previous studies, it was found that the service life, production, and end-of-life of such equipment had only a minor contribution to the total impact, and that while the overall hashrate is expected to increase, the energy consumption and environmental footprint per TH mined is expected to decrease.”

Sustainability and Artificial Intelligence

  • Strubell, E., Ganesh, A., & McCallum, A. (2019). “Energy and Policy Considerations for Deep Learning in NLP.” arXiv:1906.02243 [cs]. Retrieved from http://arxiv.org/abs/1906.02243
    Why read it? This paper quantifies the approximate financial and environmental costs of training a variety of recently successful neural network models for natural language processing (NLP). The authors further propose actionable recommendations to reduce costs and improve equity in NLP research and practice.
  • Buolamwini, J., & Gebru, T. (2018). “Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification.” Proceedings of the 1st Conference on Fairness, Accountability and Transparency. Retrieved from http://proceedings.mlr.press/v81/buolamwini18a.html
    Why read it? A groundbreaking paper showing facial recognition to be inaccurate at identifying women and people of colour; the use of these technologies may therefore end up discriminating against certain groups of society.

Electronic Waste Management

  • Rosa, P., Sassanelli, C., & Terzi, S. (2019). “Circular Business Models versus circular benefits: An assessment in the waste from Electrical and Electronic Equipments sector.” Journal of Cleaner Production, 231, 940–952. doi:10.1016/j.jclepro.2019.05.310
    Why read it? This paper presents a very recent overview of Circular Business Models in electronics and comes with four use cases from the electronic waste sector, which demonstrate how to link business models with Circular Economy benefits.
  • Cucchiella, F., D’Adamo, I., Lenny Koh, S. C., & Rosa, P. (2015). “Recycling of WEEEs: An economic assessment of present and future e-waste streams.” Renewable and Sustainable Energy Reviews, 51, 263–272. doi:10.1016/j.rser.2015.06.010
    Why read it? “Waste from Electric and Electronic Equipments (WEEEs) is currently considered to be one of the fastest growing waste streams in the world, with an estimated growth rate going from 3% up to 5% per year. The recycling of Electric or electronic waste (E-waste) products could allow the diminishing use of virgin resources in manufacturing and, consequently, it could contribute in reducing the environmental pollution. […] A discussion of the economic assessment results shows the main challenges in the recycling sector and streamlines some concrete solutions.”

Full Bibliography

[Yes, this still needs to be cleaned up and checked for consistency. As I stated above, I’m committed to keep this post up to date.]

  1. Rone, J. (2023). “The shape of the cloud: Contesting date centre construction in North Holland.” New Media & Society, 146144482211459. doi:10.1177/14614448221145928
  2. Park, M., Leahey, E., & Funk, R. J. (2023). “Papers and patents are becoming less disruptive over time.” Nature, 613(7942), 138–144. doi:10.1038/s41586-022-05543-x
  3. Urai, A. E., & Kelly, C. (2023). “Rethinking academia in a time of climate crisis.” eLife, 12, e84991. doi:10.7554/eLife.84991
  4. Villamayor-Tomas, S., & Muradian, R. (Eds.). (2023). “The Barcelona School of Ecological Economics and Political Ecology: A Companion in Honour of Joan Martinez-Alier.” Studies in Ecological Economics (Vol. 8). Cham: Springer International Publishing. doi:10.1007/978-3-031-22566-6
  5. Becker, C. (2023). Insolvent: how to reorient computing for just sustainability. Cambridge, Massachusetts: The MIT Press.
  6. Brembs, B., Lenardic, A., & Chan, L. (2023). “Mastodon: a move to publicly owned scholarly knowledge.” Nature, 614(7949), 624–624. doi:10.1038/d41586-023-00486-3
  7. Kuhlicke, C., Madruga De Brito, M., Bartkowski, B., Botzen, W., Doğulu, C., Han, S., Hudson, P., et al. (2023). “Spinning in circles? A systematic review on the role of theory in social vulnerability, resilience and adaptation research.” Global Environmental Change, 80, 102672. doi:10.1016/j.gloenvcha.2023.102672
  8. Gössling, S., & Humpe, A. (2023). “Millionaire spending incompatible with 1.5 °C ambitions.” Cleaner Production Letters, 4, 100027. doi:10.1016/j.clpl.2022.100027
  9. Redmiles, E. M., Bennett, M. M., & Kohno, T. (2023). “Power in Computer Security and Privacy: A Critical Lens.” IEEE Security & Privacy, 21(2), 48–52. doi:10.1109/MSEC.2023.3238591
  10. Verdecchia, R., Sallou, J., & Cruz, L. (2023). “A Systematic Review of Green AI.” doi:10.48550/ARXIV.2301.11047
  11. Lange, S., Santarius, T., Dencik, L., Diez, T., Ferreboeuf, H., Hankey, S., Hilbeck, A., et al. (2023). “Digital Reset, Redirecting Technologies for the Deep Sustainability Transformation.” oekom Verlag. doi:10.14512/9783987262463
  12. Kaika, M., Varvarousis, A., Demaria, F., & March, H. (2023). “Urbanizing degrowth: Five steps towards a Radical Spatial Degrowth Agenda for planning in the face of climate emergency.” Urban Studies, 004209802311622. doi:10.1177/00420980231162234
  13. Broussard, M. (2023). More than a glitch: confronting race, gender, and ability bias in tech. Cambridge, Massachusetts: The MIT Press.
  14. Ibrahim, Y. (2023). “The Science and Politics of Climate Engineering—Social Science Perspectives.” Minerva. doi:10.1007/s11024-023-09488-x
  15. Kikstra, J. S., & Waidelich, P. (2023). “Strong climate action is worth it.” Nature Climate Change. doi:10.1038/s41558-023-01635-2
  16. Borgermann, N., Schmidt, A., & Dobbelaere, J. (2022). “Preaching water while drinking wine: Why universities must boost climate action now.” One Earth, 5(1), 18–21. doi:10.1016/j.oneear.2021.12.015
  17. Feltrin, L., Mah, A., & Brown, D. (2022). “Noxious deindustrialization: Experiences of precarity and pollution in Scotland’s petrochemical capital.” Environment and Planning C: Politics and Space, 23996544211056328. doi:10.1177/23996544211056328
  18. Lenton, T. M., Benson, S., Smith, T., Ewer, T., Lanel, V., Petykowski, E., Powell, T. W. R., et al. (2022). “Operationalising Positive Tipping Points towards Global Sustainability.” Global Sustainability, 1–32. doi:10.1017/sus.2021.30
  19. Thomas, L. (2022). The intersectional environmentalist: how to dismantle systems of oppression to protect people + planet (First.). New York: Voracious/ Little, Brown and Company.
  20. Hickel, J., Dorninger, C., Wieland, H., & Suwandi, I. (2022). “Imperialist appropriation in the world economy: Drain from the global South through unequal exchange, 1990–2015.” Global Environmental Change, 73, 102467. doi:10.1016/j.gloenvcha.2022.102467
  21. Bruckner, B., Hubacek, K., Shan, Y., Zhong, H., & Feng, K. (2022). “Impacts of poverty alleviation on national and global carbon emissions.” Nature Sustainability. doi:10.1038/s41893-021-00842-z
  22. Cucchietti, F., Moll, J., Esteban, M., Reyes, P., & García Calatrava, C. (2022). “Carbolytics, an analysis of the carbon costs of online tracking.” Retrieved from http://carbolytics.org/report.html
  23. Abazeri, M. (2022). “Decolonial feminisms and degrowth.” Futures, 136, 102902. doi:10.1016/j.futures.2022.102902
  24. Aitken, R. (2022). “Decarbonising compute: a moral and technological imperative.” ITNOW, 63(4), 24–25. doi:10.1093/itnow/bwab106
  25. Booth, J. (2022). “Cleaner, greener data centres.” ITNOW, 63(4), 18–20. doi:10.1093/itnow/bwab103
  26. Borowiec, D., Harper, R. R., & Garraghan, P. (2022). “The environmental consequence of deep learning.” ITNOW, 63(4), 10–11. doi:10.1093/itnow/bwab099
  27. Lannelongue, L. (2022). “Carbon footprint: the (not so) hidden cost of high performance computing.” ITNOW, 63(4), 12–13. doi:10.1093/itnow/bwab100
  28. Kumar, S. (2022). “Embracing Green Computing in Molecular Phylogenetics.” Molecular Biology and Evolution, 39(3), msac043. doi:10.1093/molbev/msac043
  29. Grealey, J., Lannelongue, L., Saw, W.-Y., Marten, J., Méric, G., Ruiz-Carmona, S., & Inouye, M. (2022). “The Carbon Footprint of Bioinformatics.” (S. Kumar, Ed.)Molecular Biology and Evolution, 39(3), msac034. doi:10.1093/molbev/msac034
  30. Persson, L., Carney Almroth, B. M., Collins, C. D., Cornell, S., de Wit, C. A., Diamond, M. L., Fantke, P., et al. (2022). “Outside the Safe Operating Space of the Planetary Boundary for Novel Entities.” Environmental Science & Technology, 56(3), 1510–1521. doi:10.1021/acs.est.1c04158
  31. Wu, Y., Edwards, W. K., & Das, S. (2022). “SoK: Social Cybersecurity.” IEEE Symposium on Security and Privacy (Oakland). Retrieved from https://sauvikdas.com/uploads/paper/pdf/36/file.pdf
  32. Hickel, J., & Hallegatte, S. (2022). “Can we live within environmental limits and still reduce poverty? Degrowth or decoupling?” Development Policy Review, 40(1). doi:10.1111/dpr.12584
  33. Hickel, J., O’Neill, D. W., Fanning, A. L., & Zoomkawala, H. (2022). “National responsibility for ecological breakdown: a fair-shares assessment of resource use, 1970–2017.” The Lancet Planetary Health, 6(4), e342–e349. doi:10.1016/S2542-5196(22)00044-4
  34. Okunoye, B. (2022). “Digital identity for development should keep pace with national cybersecurity capacity: Nigeria in focus.” Journal of Cyber Policy, 1–14. doi:10.1080/23738871.2022.2057865
  35. Schischke, K., Berwald, A., Dimitrova, G., Rückschloss, J., Nissen, N. F., & Schneider-Ramelow, M. (2022). “Durability, reparability and recyclability: Applying material efficiency standards EN 4555x to mobile phones and tablet computers.” Procedia CIRP, 105, 619–624. doi:10.1016/j.procir.2022.02.103
  36. Kirchherr, J. (2022). “Bullshit in the Sustainability and Transitions Literature: a Provocation.” Circular Economy and Sustainability. doi:10.1007/s43615-022-00175-9
  37. Mühlberg, J. T. (2022). “Sustaining Security and Safety in ICT: A Quest for Terminology, Objectives, and Limits.” In Eighth Workshop on Computing within Limits 2022. Virtual: LIMITS. doi:10.21428/bf6fb269.58c3a89d
  38. Knowles, B., Widdicks, K., Blair, G., Berners-Lee, M., & Friday, A. (2022). “Our house is on fire.” Communications of the ACM, 65(6), 38–40. doi:10.1145/3503916
  39. Eriksson, E., Peters, A.-K., Pargman, D., Hedin, B., Laurell-Thorslund, M., & Sjoo, S. (2022). “Addressing Students’ Eco-anxiety when Teaching Sustainability in Higher Education.” In 2022 International Conference on ICT for Sustainability (ICT4S) (pp. 88–98). Plovdiv, Bulgaria: IEEE. doi:10.1109/ICT4S55073.2022.00020
  40. Anderson, M., & Fort, K. (2022). “Human Where?: A New Scale Defining Human Involvement in Technology Communities from an Ethical Standpoint.” The International Review of Information Ethics, 31(1). doi:10.29173/irie477
  41. Murray, J., Rushby, J., & Sanchez, D. (2022). “Controlling Smart Technology: A Brief Review of Some Ethical Challenges.” The International Review of Information Ethics, 31(1). doi:10.29173/irie478
  42. Eke, D., & Ogoh, G. (2022). “Forgotten African AI Narratives and the future of AI in Africa.” The International Review of Information Ethics, 31(1). doi:10.29173/irie482
  43. The Lancet Planetary Health. (2022). “A role for provocative protest.” The Lancet Planetary Health, 6(11), e846. doi:10.1016/S2542-5196(22)00287-X
  44. Bhalerao, R., Hamilton, V., McDonald, A., Redmiles, E. M., & Strohmayer, A. (2022). “Ethical Practices for Security Research with At-Risk Populations.” In 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW) (pp. 546–553). Genoa, Italy: IEEE. doi:10.1109/EuroSPW55150.2022.00065
  45. Rothstein, S. A. (2022). Recoding power: tactics for mobilizing tech workers (1st ed.). New York: Oxford University Press.
  46. Iliadis, A., & Acker, A. (2022). “The seer and the seen: Surveying Palantir’s surveillance platform.” The Information Society, 38(5), 334–363. doi:10.1080/01972243.2022.2100851
  47. Törnberg, P. (2022). “How digital media drive affective polarization through partisan sorting.” Proceedings of the National Academy of Sciences, 119(42), e2207159119. doi:10.1073/pnas.2207159119
  48. Monahan, T. (2022). Crisis vision: race and the cultural production of surveillance. Durham: Duke University Press.
  49. Kaul, S., Akbulut, B., Demaria, F., & Gerber, J.-F. (2022). “Alternatives to sustainable development: what can we learn from the pluriverse in practice?” Sustainability Science, 17(4), 1149–1158. doi:10.1007/s11625-022-01210-2
  50. Cabaña, G., & Linares, J. (2022). “Decolonising money: learning from collective struggles for self-determination.” Sustainability Science, 17(4), 1159–1170. doi:10.1007/s11625-022-01104-3
  51. Maldonado-Villalpando, E., Paneque-Gálvez, J., Demaria, F., & Napoletano, B. M. (2022). “Grassroots innovation for the pluriverse: evidence from Zapatismo and autonomous Zapatista education.” Sustainability Science, 17(4), 1301–1316. doi:10.1007/s11625-022-01172-5
  52. Lang, M. (2022). “Buen vivir as a territorial practice. Building a more just and sustainable life through interculturality.” Sustainability Science, 17(4), 1287–1299. doi:10.1007/s11625-022-01130-1
  53. Oleson, A. (2022). “CIDER: A Method to Teach Practical Critical Software Design Skills.” In Proceedings of the 2022 ACM Conference on International Computing Education Research - Volume 2 (pp. 7–9). Lugano and Virtual Event Switzerland: ACM. doi:10.1145/3501709.3544295
  54. Anstis, S., & Barnett, S. (2022). “Digital Transnational Repression and Host States’ Obligation to Protect Against Human Rights Abuses.” Journal of Human Rights Practice, 14(2), 698–725. doi:10.1093/jhuman/huab051
  55. Giblin, R., & Doctorow, C. (2022). Chokepoint capitalism: how to beat big tech, tame big content, and get artists paid. Boston: Beacon Press.
  56. Meyer, R. (2022, October). “The Climate Economy Is About to Explode.” The Atlantic. Retrieved from https://www.theatlantic.com/science/archive/2022/10/inflation-reduction-act-climate-economy/671659/
  57. Kuntsman, A., & Miyake, E. (2022). “Paradoxes of Digital Disengagement: In Search of the Opt-Out Button.” University of Westminster Press. doi:10.16997/book61
  58. Benjamin, R. (2022). Viral justice: how we grow the world we want (1st ed.). Princeton: Princeton University Press.
  59. Sovacool, B. K. (2022). “Beyond science and policy: Typologizing and harnessing social movements for transformational social change.” Energy Research & Social Science, 94, 102857. doi:10.1016/j.erss.2022.102857
  60. McQuillan, D. (2022). Resisting AI: an anti-fascist approach to artificial intelligence. Bristol: Bristol University Press.
  61. Komatsu, H., Rappleye, J., & Uchida, Y. (2022). “Is happiness possible in a degrowth society?” Futures, 144, 103056. doi:10.1016/j.futures.2022.103056
  62. Ivanova, D., & Büchs, M. (2022). “Implications of shrinking household sizes for meeting the 1.5 °C climate targets.” Ecological Economics, 202, 107590. doi:10.1016/j.ecolecon.2022.107590
  63. Capstick, S., Thierry, A., Cox, E., Berglund, O., Westlake, S., & Steinberger, J. K. (2022). “Civil disobedience by scientists helps press for urgent climate action.” Nature Climate Change, 12(9), 773–774. doi:10.1038/s41558-022-01461-y
  64. Stechemesser, A., Levermann, A., & Wenz, L. (2022). “Temperature impacts on hate speech online: evidence from 4 billion geolocated tweets from the USA.” The Lancet Planetary Health, 6(9), e714–e725. doi:10.1016/S2542-5196(22)00173-5
  65. Dengler, C., & Lang, M. (2022). “Commoning Care: Feminist Degrowth Visions for a Socio-Ecological Transformation.” Feminist Economics, 28(1), 1–28. doi:10.1080/13545701.2021.1942511
  66. Hickel, J., Kallis, G., Jackson, T., O’Neill, D. W., Schor, J. B., Steinberger, J. K., Victor, P. A., et al. (2022). “Degrowth can work — here’s how science can help.” Nature, 612(7940), 400–403. doi:10.1038/d41586-022-04412-x
  67. Verdecchia, R., Cruz, L., Sallou, J., Lin, M., Wickenden, J., & Hotellier, E. (2022). “Data-Centric Green AI An Exploratory Empirical Study.” In 2022 International Conference on ICT for Sustainability (ICT4S) (pp. 35–45). Plovdiv, Bulgaria: IEEE. doi:10.1109/ICT4S55073.2022.00015
  68. Santarius, T. (2022). “Climate justice and digitalization: A plea to consider broader socio-economic implications of digitalization and climate change.” GAIA - Ecological Perspectives for Science and Society, 31(3), 146–150. doi:10.14512/gaia.31.3.4
  69. Dodge, J., Prewitt, T., Tachet Des Combes, R., Odmark, E., Schwartz, R., Strubell, E., Luccioni, A. S., et al. (2022). “Measuring the Carbon Intensity of AI in Cloud Instances.” In 2022 ACM Conference on Fairness, Accountability, and Transparency (pp. 1877–1894). Seoul Republic of Korea: ACM. doi:10.1145/3531146.3533234
  70. Patterson, D., Gonzalez, J., Holzle, U., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D., et al. (2022). “The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink.” Computer, 55(7), 18–28. doi:10.1109/MC.2022.3148714
  71. Lago, P., Verdecchia, R., Condori-Fernandez, N., Rahmadian, E., Sturm, J., van Nijnanten, T., Bosma, R., et al. (2021). “Designing for Sustainability: Lessons Learned from Four Industrial Projects.” In A. Kamilaris, V. Wohlgemuth, K. Karatzas, & I. N. Athanasiadis (Eds.), Advances and New Trends in Environmental Informatics (pp. 3–18). Cham: Springer International Publishing. doi:10.1007/978-3-030-61969-5_1
  72. Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G., & Friday, A. (2021). “The climate impact of ICT: A review of estimates, trends and regulations.” arXiv:2102.02622 [physics]. Retrieved from http://arxiv.org/abs/2102.02622
  73. Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). “On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?” Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAccT2021). Retrieved from http://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf
  74. Obringer, R., Rachunok, B., Maia-Silva, D., Arbabzadeh, M., Nateghi, R., & Madani, K. (2021). “The overlooked environmental footprint of increasing Internet use.” Resources, Conservation and Recycling, 167, 105389. doi:10.1016/j.resconrec.2020.105389
  75. Groschupp, F., Schneider, M., Puddu, I., Shinde, S., & Capkun, S. (2021). “Sovereign Smartphone: To Enjoy Freedom We Have to Control Our Phones.” arXiv:2102.02743 [cs]. Retrieved from http://arxiv.org/abs/2102.02743
  76. de Vries, A. (2021). “Bitcoin boom: What rising prices mean for the network’s energy consumption.” Joule, 5(3), 509–513. doi:10.1016/j.joule.2021.02.006
  77. Jiang, S., Li, Y., Lu, Q., Hong, Y., Guan, D., Xiong, Y., & Wang, S. (2021). “Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China.” Nature Communications, 12(1), 1938. doi:10.1038/s41467-021-22256-3
  78. Khan, S. A. R., Yu, Z., Sarwat, S., Godil, D. I., Amin, S., & Shujaat, S. (2021). “The role of block chain technology in circular economy practices to improve organisational performance.” International Journal of Logistics Research and Applications, 0(0), 1–18. doi:10.1080/13675567.2021.1872512
  79. Greenwood, T. (2021). “Sustainable Web Design.” S.l.: A Book Apart. Retrieved from https://learning.oreilly.com/library/view/ /9781098128807/?ar?orpq&email=^u
  80. Bjørn, A., Lloyd, S., & Matthews, D. (2021). “From the Paris Agreement to corporate climate commitments: evaluation of seven methods for setting ‘science-based’ emission targets.” Environmental Research Letters, 16(5), 054019. doi:10.1088/1748-9326/abe57b
  81. Giesekam, J., Norman, J., Garvey, A., & Betts-Davies, S. (2021). “Science-Based Targets: On Target?” Sustainability, 13(4), 1657. doi:10.3390/su13041657
  82. Matus, K. J. M., & Veale, M. (2021). “Certification systems for machine learning: Lessons from sustainability.” Regulation & Governance, rego.12417. doi:10.1111/rego.12417
  83. Oswald, Y., Steinberger, J. K., Ivanova, D., & Millward-Hopkins, J. (2021). “Global redistribution of income and household energy footprints: a computational thought experiment.” Global Sustainability, 4, e4. doi:10.1017/sus.2021.1
  84. Crawford, K. (2021). Atlas of Ai: power, politics, and the planetary costs of artificial intelligence. New Haven: Yale University Press.
  85. Herrington, R. (2021). “Mining our green future.” Nature Reviews Materials, 6(6), 456–458. doi:10.1038/s41578-021-00325-9
  86. “Raw materials for a truly green future.” (2021).Nature Reviews Materials, 6(6), 455–455. doi:10.1038/s41578-021-00333-9
  87. Weidenkaff, A., Wagner-Wenz, R., & Veziridis, A. (2021). “A world without electronic waste.” Nature Reviews Materials, 6(6), 462–463. doi:10.1038/s41578-021-00330-y
  88. “Lithium-ion batteries need to be greener and more ethical.” (2021).Nature, 595(7865), 7–7. doi:10.1038/d41586-021-01735-z
  89. Vogel, J., Steinberger, J. K., O’Neill, D. W., Lamb, W. F., & Krishnakumar, J. (2021). “Socio-economic conditions for satisfying human needs at low energy use: An international analysis of social provisioning.” Global Environmental Change, 102287. doi:10.1016/j.gloenvcha.2021.102287
  90. Koomey, J., & Masanet, E. (2021). “Does not compute: Avoiding pitfalls assessing the Internet’s energy and carbon impacts.” Joule, S2542435121002117. doi:10.1016/j.joule.2021.05.007
  91. Franta, B. (2021). “Weaponizing economics: Big Oil, economic consultants, and climate policy delay.” Environmental Politics, 1–21. doi:10.1080/09644016.2021.1947636
  92. Moreau, N., Pirson, T., Le Brun, G., Delhaye, T., Sandu, G., Paris, A., Bol, D., et al. (2021). “Could Unsustainable Electronics Support Sustainability?” Sustainability, 13(12), 6541. doi:10.3390/su13126541
  93. Manjunatheshwara, K., & Vinodh, S. (2021). “Sustainable electronics product design and manufacturing: State of art review.” International Journal of Sustainable Engineering, 14(4), 541–551. doi:10.1080/19397038.2021.1900448
  94. Dauvergne, P. (2021). “The globalization of artificial intelligence: consequences for the politics of environmentalism.” Globalizations, 18(2), 285–299. doi:10.1080/14747731.2020.1785670
  95. Kikstra, J. S., Waidelich, P., Rising, J., Yumashev, D., Hope, C., & Brierley, C. M. (2021). “The social cost of carbon dioxide under climate-economy feedbacks and temperature variability.” Environmental Research Letters, 16(9), 094037. doi:10.1088/1748-9326/ac1d0b
  96. Kikstra, J. S., Mastrucci, A., Min, J., Riahi, K., & Rao, N. D. (2021). “Decent living gaps and energy needs around the world.” Environmental Research Letters, 16(9), 095006. doi:10.1088/1748-9326/ac1c27
  97. Bauer, T., Mandil, G., Monnier, É., & Zwolinski, P. (2021). “Design for cascading applications reuse – understandings of an emerging end-of-use strategy and propositions for its implementation.” Journal of Engineering Design, 32(3), 140–163. doi:10.1080/09544828.2020.1871470
  98. Li, R. Y. M., Li, Y. L., Crabbe, M. J. C., Manta, O., & Shoaib, M. (2021). “The Impact of Sustainability Awareness and Moral Values on Environmental Laws.” Sustainability, 13(11), 5882. doi:10.3390/su13115882
  99. Faber, G. (2021). “A framework to estimate emissions from virtual conferences.” International Journal of Environmental Studies, 78(4), 608–623. doi:10.1080/00207233.2020.1864190
  100. Mytton, D. (2021). “Data centre water consumption.” npj Clean Water, 4(1), 1–6. doi:10.1038/s41545-021-00101-w
  101. Grubb, M., Drummond, P., Poncia, A., McDowall, W., Popp, D., Samadi, S., Penasco, C., et al. (2021). “Induced innovation in energy technologies and systems: a review of evidence and potential implications for CO _\textrm2 mitigation.” Environmental Research Letters, 16(4), 043007. doi:10.1088/1748-9326/abde07
  102. Radovanovic, A., Koningstein, R., Schneider, I., Chen, B., Duarte, A., Roy, B., Xiao, D., et al. (2021). “Carbon-Aware Computing for Datacenters.” arXiv:2106.11750 [cs, eess]. Retrieved from http://arxiv.org/abs/2106.11750
  103. Saraiva, J., Zong, Z., & Pereira, R. (2021). “Bringing Green Software to Computer Science Curriculum: Perspectives from Researchers and Educators.” In Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science Education V. 1, ITiCSE ’21 (pp. 498–504). Virtual Event, Germany: Association for Computing Machinery. doi:10.1145/3430665.3456386
  104. Pirson, T., & Bol, D. (2021). “Assessing the embodied carbon footprint of IoT edge devices with a bottom-up life-cycle approach.” Journal of Cleaner Production, 322, 128966. doi:10.1016/j.jclepro.2021.128966
  105. Brand, U., Muraca, B., Pineault, É., Sahakian, M., Schaffartzik, A., Novy, A., Streissler, C., et al. (2021). “From planetary to societal boundaries: an argument for collectively defined self-limitation.” Sustainability: Science, Practice and Policy, 17(1), 265–292. doi:10.1080/15487733.2021.1940754
  106. Castano Garcia, A., Ambrose, A., Hawkins, A., & Parkes, S. (2021). “High consumption, an unsustainable habit that needs more attention.” Energy Research & Social Science, 80, 102241. doi:10.1016/j.erss.2021.102241
  107. Chee, F. M., Hjorth, L., & Davies, H. (2021). “An ethnographic co-design approach to promoting diversity in the games industry.” Feminist Media Studies, 1–17. doi:10.1080/14680777.2021.1905680
  108. Adams, R. (2021). “Can artificial intelligence be decolonized?” Interdisciplinary Science Reviews, 46(1-2), 176–197. doi:10.1080/03080188.2020.1840225
  109. Pohlmann, A., Walz, K., Engels, A., Aykut, S. C., Altstaedt, S., Colell, A., Dietrich, U., et al. (2021). It’s not enough to be right! The climate crisis, power, and the climate movement. GAIA - Ecological Perspectives for Science and Society, 30(4), 231–236. doi:10.14512/gaia.30.4.5
  110. Gardner, C. J., Thierry, A., Rowlandson, W., & Steinberger, J. K. (2021). “From Publications to Public Actions: The Role of Universities in Facilitating Academic Advocacy and Activism in the Climate and Ecological Emergency.” Frontiers in Sustainability, 2, 42. doi:10.3389/frsus.2021.679019
  111. Warszawski, L., Kriegler, E., Lenton, T. M., Gaffney, O., Jacob, D., Klingenfeld, D., Koide, R., et al. (2021). “All options, not silver bullets, needed to limit global warming to 1.5 °C: a scenario appraisal.” Environmental Research Letters, 16(6), 064037. doi:10.1088/1748-9326/abfeec
  112. Kröger, J. L., Miceli, M., & Müller, F. (2021). “How Data Can Be Used Against People: A Classification of Personal Data Misuses.” SSRN Electronic Journal. doi:10.2139/ssrn.3887097
  113. Hickel, J., Sullivan, D., & Zoomkawala, H. (2021). “Plunder in the Post-Colonial Era: Quantifying Drain from the Global South Through Unequal Exchange, 1960–2018.” New Political Economy, 26(6), 1030–1047. doi:10.1080/13563467.2021.1899153
  114. Dorninger, C., Hornborg, A., Abson, D. J., von Wehrden, H., Schaffartzik, A., Giljum, S., Engler, J.-O., et al. (2021). “Global patterns of ecologically unequal exchange: Implications for sustainability in the 21st century.” Ecological Economics, 179, 106824. doi:10.1016/j.ecolecon.2020.106824
  115. Feola, G., Koretskaya, O., & Moore, D. (2021). “(Un)making in sustainability transformation beyond capitalism.” Global Environmental Change, 69, 102290. doi:10.1016/j.gloenvcha.2021.102290
  116. Stoddard, I., Anderson, K., Capstick, S., Carton, W., Depledge, J., Facer, K., Gough, C., et al. (2021). “Three Decades of Climate Mitigation: Why Haven’t We Bent the Global Emissions Curve?” Annual Review of Environment and Resources, 46(1), 653–689. doi:10.1146/annurev-environ-012220-011104
  117. Theilen, J. T., Baur, A., Bieker, F., Ammicht Quinn, R., Hansen, M., & González Fuster, G. (2021). “Feminist data protection: an introduction.” Internet Policy Review, 10(4). doi:10.14763/2021.4.1609
  118. Fiebig, T., Gürses, S., Gañán, C. H., Kotkamp, E., Kuipers, F., Lindorfer, M., Prisse, M., et al. (2021). “Heads in the Clouds: Measuring the Implications of Universities Migrating to Public Clouds.” arXiv:2104.09462 [cs]. Retrieved from http://arxiv.org/abs/2104.09462
  119. Caforio, A., Balli, F., Banik, S., & Regazzoni, F. (2021). “A Deeper Look at the Energy Consumption of Lightweight Block Ciphers.” In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 170–175). Grenoble, France: IEEE. doi:10.23919/DATE51398.2021.9474018
  120. Bellizia, D., Mrabet, N. E., Fournaris, A. P., Pontie, S., Regazzoni, F., Standaert, F.-X., Tasso, E., et al. (2021). “Post-Quantum Cryptography: Challenges and Opportunities for Robust and Secure HW Design.” In 2021 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) (pp. 1–6). Athens, Greece: IEEE. doi:10.1109/DFT52944.2021.9568301
  121. Lannelongue, L., Grealey, J., Bateman, A., & Inouye, M. (2021). “Ten simple rules to make your computing more environmentally sustainable.” (R. Schwartz, Ed.)PLOS Computational Biology, 17(9), e1009324. doi:10.1371/journal.pcbi.1009324
  122. Lannelongue, L., Grealey, J., & Inouye, M. (2021). “Green Algorithms: Quantifying the Carbon Footprint of Computation.” Advanced Science, 8(12), 2100707. doi:10.1002/advs.202100707
  123. Herzog, B., Reif, S., Preis, J., Schröder-Preikschat, W., & Hönig, T. (2021). “The Price of Meltdown and Spectre: Energy Overhead of Mitigations at Operating System Level.” In Proceedings of the 14th European Workshop on Systems Security (pp. 8–14). Online United Kingdom: ACM. doi:10.1145/3447852.3458721
  124. Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G. S., & Friday, A. (2021). “The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations.” Patterns, 2(9), 100340. doi:10.1016/j.patter.2021.100340
  125. Roura, M., Franquesa, D., Navarro, L., & Meseguer, R. (2021). “Circular digital devices: lessons about the social and planetary boundaries.” LIMITS Workshop on Computing within Limits. doi:10.21428/bf6fb269.3881c46e
  126. Venters, C. C., Kocak, S. A., Betz, S., Brooks, I., Capilla, R., Chitchyan, R., Duboc, L., et al. (2021). “Software Sustainability: Beyond the Tower of Babel.” In 2021 IEEE/ACM International Workshop on Body of Knowledge for Software Sustainability (BoKSS) (pp. 3–4). Madrid, Spain: IEEE. doi:10.1109/BoKSS52540.2021.00009
  127. Seyff, N., Penzenstadler, B., Betz, S., Brooks, I., Oyedeji, S., Porras, J., Duboc, L., et al. (2021). “The Elephant in the Room - Educating Practitioners on Software Development for Sustainability.” In 2021 IEEE/ACM International Workshop on Body of Knowledge for Software Sustainability (BoKSS) (pp. 25–26). Madrid, Spain: IEEE. doi:10.1109/BoKSS52540.2021.00017
  128. Porras, J., Venters, C. C., Penzenstadler, B., Duboc, L., Betz, S., Seyff, N., Heshmatisafa, S., et al. (2021). “How Could We Have Known? Anticipating Sustainability Effects of a Software Product.” In X. Wang, A. Martini, A. Nguyen-Duc, & V. Stray (Eds.), Software Business (Vol. 434, pp. 10–17). Cham: Springer International Publishing. doi:10.1007/978-3-030-91983-2_2
  129. Ringenson, T. (2021). “Mobilising digitalisation to serve environmental goals.” KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Strategic Sustainability Studies. Retrieved from http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-288509
  130. Streed, A., Kantar, M., Tomlinson, B., & Raghavan, B. (2021). “How Sustainable is the Smart Farm?” Workshop on Computing within Limits. doi:10.21428/bf6fb269.f2d0adaf
  131. Frick, V., Matthies, E., Thøgersen, J., & Santarius, T. (2021). “Do online environments promote sufficiency or overconsumption? Online advertisement and social media effects on clothing, digital devices, and air travel consumption.” Journal of Consumer Behaviour, 20(2), 288–308. doi:10.1002/cb.1855
  132. Plieninger, T., Fagerholm, N., & Bieling, C. (2021). “How to run a sustainability science research group sustainably?” Sustainability Science, 16(1), 321–328. doi:10.1007/s11625-020-00857-z
  133. Hickel, J., Brockway, P., Kallis, G., Keyßer, L., Lenzen, M., Slameršak, A., Steinberger, J., et al. (2021). “Urgent need for post-growth climate mitigation scenarios.” Nature Energy, 6(8), 766–768. doi:10.1038/s41560-021-00884-9
  134. Hickel, J. (2021). “What does degrowth mean? A few points of clarification.” Globalizations, 18(7), 1105–1111. doi:10.1080/14747731.2020.1812222
  135. Tollefson, J. (2021). “Top climate scientists are sceptical that nations will rein in global warming.” Nature, 599(7883), 22–24. doi:10.1038/d41586-021-02990-w
  136. Alexander, S., Chandrashekeran, S., & Gleeson, B. (Eds.). (2021). Post-capitalist futures: paradigms, politics, and prospects. Alternatives and futures: cultures, practices, activism and utopias. Singapore: Palgrave Macmillan.
  137. van der Vlist, F. N., & Helmond, A. (2021). “How partners mediate platform power: Mapping business and data partnerships in the social media ecosystem.” Big Data & Society, 8(1), 205395172110250. doi:10.1177/20539517211025061
  138. Liboiron, M. (2021). “Pollution Is Colonialism.” Duke University Press. doi:10.1515/9781478021445
  139. De Valk, M. (2021). “A pluriverse of local worlds: A review of Computing within Limits related terminology and practices.” LIMITS Workshop on Computing within Limits. doi:10.21428/bf6fb269.1e37d8be
  140. Grimal, L., Loreto, I. D., Burger, N., & Troussier, N. (2021). “Design of an interdisciplinary evaluation method for multi-scaled sustainability of computer-based projects. A workbased on the Sustainable Computing Evaluation Framework (SCEF).” LIMITS Workshop on Computing within Limits. doi:10.21428/bf6fb269.2ee80cf1
  141. Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D., So, D., et al. (2021). “Carbon Emissions and Large Neural Network Training.” doi:10.48550/ARXIV.2104.10350
  142. Hjalsted, A. W., Laurent, A., Andersen, M. M., Olsen, K. H., Ryberg, M., & Hauschild, M. (2021). “Sharing the safe operating space: Exploring ethical allocation principles to operationalize the planetary boundaries and assess absolute sustainability at individual and industrial sector levels.” Journal of Industrial Ecology, 25(1), 6–19. doi:10.1111/jiec.13050
  143. Cordella, M., Alfieri, F., & Sanfelix, J. (2020). “Guidance for the Assessment of Material Efficiency: Application to Smartphones.” doi:10.2760/037522
  144. Masanet, E., Shehabi, A., Lei, N., Smith, S., & Koomey, J. (2020). Recalibrating global data center energy-use estimates. Science, 367(6481), 984–986. doi:10.1126/science.aba3758
  145. Quisbert-Trujillo, E., Ernst, T., Samuel, K. E., Cor, E., & Monnier, E. (2020). “Lifecycle modeling for the eco design of the Internet of Things.” Procedia CIRP, 90, 97–101. doi:10.1016/j.procir.2020.02.120
  146. Hill, J., Widdicks, K., & Hazas, M. (2020). “Mapping the Scope of Software Interventions for Moderate Internet Use on Mobile Devices.” In Proceedings of the 7th International Conference on ICT for Sustainability (pp. 204–212). Bristol United Kingdom: ACM. doi:10.1145/3401335.3401361
  147. Burtscher, L., Barret, D., Borkar, A. P., Grinberg, V., Jahnke, K., Kendrew, S., Maffey, G., et al. (2020). “The carbon footprint of large astronomy meetings.” Nature Astronomy, 4(9), 823–825. doi:10.1038/s41550-020-1207-z
  148. Clément, L.-P. P.-V. P., Jacquemotte, Q. E. S., & Hilty, L. M. (2020). “Sources of variation in life cycle assessments of smartphones and tablet computers.” Environmental Impact Assessment Review, 84, 106416. doi:10.1016/j.eiar.2020.106416
  149. Mytton, D. (2020). “Hiding greenhouse gas emissions in the cloud.” Nature Climate Change, 10(8), 701–701. doi:10.1038/s41558-020-0837-6
  150. European Commission. Joint Research Centre. (2020). “Guidance for the assessment of material efficiency: application to smartphones.” LU: Publications Office. Retrieved from https://data.europa.eu/doi/10.2760/037522
  151. European Commission. Directorate General for Internal Market, Industry, Entrepreneurship and SMEs. (2020). “Critical raw materials for strategic technologies and sectors in the EU: a foresight study.” LU: Publications Office. Retrieved from https://data.europa.eu/doi/10.2873/58081
  152. Okrasinski, T. A., & Benowitz, M. S. (2020). Quantifying Environmental Life Cycle Impacts for ICT Products-A Simpler Approach. 2020 Pan Pacific Microelectronics Symposium, Pan Pacific 2020, 1–4. doi:10.23919/PanPacific48324.2020.9059483
  153. Horizon, E. N., & Programme, W. (2020). Building a low-carbon, climate resilient future: Green Deal call.
  154. Lange, S., Pohl, J., & Santarius, T. (2020). “Digitalization and energy consumption. Does ICT reduce energy demand?” Ecological Economics, 176, 106760. doi:10.1016/j.ecolecon.2020.106760
  155. Tan, Q., Liu, L., Yu, M., & Li, J. (2020). “An innovative method of recycling metals in printed circuit board (PCB) using solutions from PCB production.” Journal of Hazardous Materials, 390, 121892. doi:10.1016/j.jhazmat.2019.121892
  156. Sun, M., & Zhang, J. (2020). “Research on the application of block chain big data platform in the construction of new smart city for low carbon emission and green environment.” Computer Communications, 149, 332–342. doi:10.1016/j.comcom.2019.10.031
  157. Gallersdörfer, U., Klaaßen, L., & Stoll, C. (2020). “Energy Consumption of Cryptocurrencies Beyond Bitcoin.” Joule, 4(9), 1843–1846. doi:10.1016/j.joule.2020.07.013
  158. Clarke-Sather, A. R., Mamun, S., Nolan, D., Schoff, P., Aro, M., & Ulrich, B. (2020). “Towards Prospective Sustainability Life Cycle Assessment.” In Volume 6: 25th Design for Manufacturing and the Life Cycle Conference (DFMLC) (p. V006T06A024). Virtual, Online: American Society of Mechanical Engineers. doi:10.1115/DETC2020-22526
  159. Hickel, J., & Kallis, G. (2020). “Is Green Growth Possible?” New Political Economy, 25(4), 469–486. doi:10.1080/13563467.2019.1598964
  160. Millward-Hopkins, J., Steinberger, J. K., Rao, N. D., & Oswald, Y. (2020). “Providing decent living with minimum energy: A global scenario.” Global Environmental Change, 65, 102168. doi:10.1016/j.gloenvcha.2020.102168
  161. Lange, S., & Santarius, T. (2020). “Smart Green World?: Making Digitalization Work for Sustainability” (1st ed.). Milton Park, Abingdon, Oxon; New York, NY: Routledge, 2020.: Routledge. doi:10.4324/9781003030881
  162. Rifat, M. R., Toriq, T., & Ahmed, S. I. (2020). “Religion and Sustainability: Lessons of Sustainable Computing from Islamic Religious Communities.” Proceedings of the ACM on Human-Computer Interaction, 4(CSCW2), 1–32. doi:10.1145/3415199
  163. Wang, Y., Peris, A., Rifat, M. R., Ahmed, S. I., Aich, N., Nguyen, L. V., Urík, J., et al. (2020). “Measuring exposure of e-waste dismantlers in Dhaka Bangladesh to organophosphate esters and halogenated flame retardants using silicone wristbands and T-shirts.” Science of The Total Environment, 720, 137480. doi:10.1016/j.scitotenv.2020.137480
  164. Dauvergne, P. (2020). “Is artificial intelligence greening global supply chains? Exposing the political economy of environmental costs.” Review of International Political Economy, 1–23. doi:10.1080/09692290.2020.1814381
  165. Dauvergne, P. (2020). AI in the wild: sustainability in the age of artificial intelligence. One planet. Cambridge, Massachusetts: The MIT Press.
  166. Kreps, D., & Fors, P. (2020). “A Resource Perspective on E-Waste: A Global Problem with Local Solutions?” In L. Strous, R. Johnson, D. A. Grier, & D. Swade (Eds.), Unimagined Futures – ICT Opportunities and Challenges (Vol. 555, pp. 129–141). Cham: Springer International Publishing. doi:10.1007/978-3-030-64246-4_11
  167. Eriksson, E., Rivera, M. B., Hedin, B., Pargman, D., & Hasselqvist, H. (2020). “Systems Thinking Exercises in Computing Education: Broadening the Scope of ICT and Sustainability.” In Proceedings of the 7th International Conference on ICT for Sustainability (pp. 170–176). Bristol United Kingdom: ACM. doi:10.1145/3401335.3401670
  168. Kendall, L., & Dearden, A. (2020). “The politics of co-design in ICT for sustainable development.” CoDesign, 16(1), 81–95. doi:10.1080/15710882.2020.1722176
  169. Suski, P., Pohl, J., & Frick, V. (2020). “All you can stream: Investigating the role of user behavior for greenhouse gas intensity of video streaming.” In Proceedings of the 7th International Conference on ICT for Sustainability (pp. 128–138). Bristol United Kingdom: ACM. doi:10.1145/3401335.3401709
  170. Proske, M., & Finkbeiner, M. (2020). “Obsolescence in LCA–methodological challenges and solution approaches.” The International Journal of Life Cycle Assessment, 25(3), 495–507. doi:10.1007/s11367-019-01710-x
  171. Duclos, L., Chattot, R., Dubau, L., Thivel, P.-X., Mandil, G., Laforest, V., Bolloli, M., et al. (2020). “Closing the loop: life cycle assessment and optimization of a PEMFC platinum-based catalyst recycling process.” Green Chemistry, 22(6), 1919–1933. doi:10.1039/C9GC03630J
  172. Bauer, T., Zwolinski, P., Nasr, N., & Mandil, G. (2020). “Characterization of circular strategies to better design circular industrial systems.” Journal of Remanufacturing, 10(3), 161–176. doi:10.1007/s13243-020-00083-x
  173. Marolla, C. (2020). Information and Communication Technology for Sustainable Development. S.l.: CRC PRESS.
  174. Lamb, W. F., Mattioli, G., Levi, S., Roberts, J. T., Capstick, S., Creutzig, F., Minx, J. C., et al. (2020). “Discourses of climate delay.” Global Sustainability, 3. doi:10.1017/sus.2020.13
  175. Leiserson, C. E., Thompson, N. C., Emer, J. S., Kuszmaul, B. C., Lampson, B. W., Sanchez, D., & Schardl, T. B. (2020). “There’s plenty of room at the Top: What will drive computer performance after Moore’s law?” Science, 368(6495), eaam9744. doi:10.1126/science.aam9744
  176. Coroamă, V. C., Bergmark, P., Höjer, M., & Malmodin, J. (2020). “A Methodology for Assessing the Environmental Effects Induced by ICT Services: Part I: Single Services.” In Proceedings of the 7th International Conference on ICT for Sustainability, ICT4S2020 (pp. 36–45). Bristol, United Kingdom: Association for Computing Machinery. doi:10.1145/3401335.3401716
  177. Bergmark, P., Coroamă, V. C., Höjer, M., & Donovan, C. (2020). “A Methodology for Assessing the Environmental Effects Induced by ICT Services: Part II: Multiple Services and Companies.” In Proceedings of the 7th International Conference on ICT for Sustainability, ICT4S2020 (pp. 46–55). Bristol, United Kingdom: Association for Computing Machinery. doi:10.1145/3401335.3401711
  178. Dhar, P. (2020). “The carbon impact of artificial intelligence.” Nature Machine Intelligence, 2(8), 423–425. doi:10.1038/s42256-020-0219-9
  179. Hooker, S. (2020). “The Hardware Lottery.” arXiv:2009.06489 [cs]. Retrieved from http://arxiv.org/abs/2009.06489
  180. Itten, R., Hischier, R., Andrae, A. S. G., Bieser, J. C. T., Cabernard, L., Falke, A., Ferreboeuf, H., et al. (2020). “Digital transformation—life cycle assessment of digital services, multifunctional devices and cloud computing.” The International Journal of Life Cycle Assessment, 25(10), 2093–2098. doi:10.1007/s11367-020-01801-0
  181. Lovink, G. (2020). “Principles of Stacktivism.” tripleC: Communication, Capitalism & Critique. Open Access Journal for a Global Sustainable Information Society, 716–724. doi:10.31269/triplec.v18i2.1231
  182. Sjöman, M., Ringenson, T., & Kramers, A. (2020). “Exploring everyday mobility in a living lab based on economic interventions.” European Transport Research Review, 12(1), 5. doi:10.1186/s12544-019-0392-2
  183. Costanza-Chock, S. (2020). Design justice: community-led practices to build the worlds we need. Information policy. Cambridge, MA: The MIT Press.
  184. Anthony, L. F. W., Kanding, B., & Selvan, R. (2020). “Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning Models.” arXiv:2007.03051 [cs, eess, stat]. Retrieved from http://arxiv.org/abs/2007.03051
  185. Torsi, S., Verardi, L., & Ardito, C. (2020). “Children’s Tinkering Activity with Collapse Informatics: The Internalization of Environmental Consciousness.” In C. Sylla & I. Iurgel (Eds.), Technology, Innovation, Entrepreneurship and Education (Vol. 307, pp. 23–33). Cham: Springer International Publishing. doi:10.1007/978-3-030-40180-1_3
  186. McIlwain, C. D. (2020). Black software: the Internet and racial justice, from the AfroNet to Black Lives Matter. New York, NY: Oxford University Press.
  187. Dubber, M. D., Pasquale, F., & Das, S. (Eds.). (2020). The Oxford handbook of ethics of AI. Oxford handbooks series. New York, NY: Oxford University Press.
  188. Powell, K. (2020). “Tech tools to make research more open and inclusive.” Nature, 578(7793), 181–182. doi:10.1038/d41586-020-00216-z
  189. Wang, X. (2020). Blockchain chicken farm: and other stories of tech in China’s countryside. FSG Originals X Logic (First edition.). New York: Farrar, Straus and Giroux.
  190. Hanaček, K., Roy, B., Avila, S., & Kallis, G. (2020). “Ecological economics and degrowth: Proposing a future research agenda from the margins.” Ecological Economics, 169, 106495. doi:10.1016/j.ecolecon.2019.106495
  191. Deneckère, R., & Rubio, G. (2020). “EcoSoft: Proposition of an Eco-Label for Software Sustainability.” In S. Dupuy-Chessa & H. A. Proper (Eds.), Advanced Information Systems Engineering Workshops (Vol. 382, pp. 121–132). Cham: Springer International Publishing. doi:10.1007/978-3-030-49165-9_11
  192. de Macedo, J., Aloísio, J., Gonçalves, N., Pereira, R., & Saraiva, J. (2020). “Energy wars - Chrome vs. Firefox: which browser is more energy efficient?” In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering Workshops (pp. 159–165). Virtual Event Australia: ACM. doi:10.1145/3417113.3423000
  193. Wiedmann, T., Lenzen, M., Keyßer, L. T., & Steinberger, J. K. (2020). “Scientists’ warning on affluence.” Nature Communications, 11(1), 3107. doi:10.1038/s41467-020-16941-y
  194. Pargman, D., Biørn-Hansen, A., Eriksson, E., Laaksolahti, J., & Robèrt, M. (2020). “From Moore’s Law to the Carbon Law.” In Proceedings of the 7th International Conference on ICT for Sustainability (pp. 285–293). Bristol United Kingdom: ACM. doi:10.1145/3401335.3401825
  195. Lindura Sappong, Sappong, T., Owen, M., & Lortie, C. (2020). “Digital Activism and Climate Justice,” 779710826 Bytes. doi:10.6084/M9.FIGSHARE.13146767.V1
  196. McLean, J. (2020). “Digital Rights and Digital Justice: Defining and Negotiating Shifting Human–Technology Relations.” In Changing Digital Geographies (pp. 65–89). Cham: Springer International Publishing. doi:10.1007/978-3-030-28307-0_4
  197. Condori-Fernandez, N., Lago, P., Luaces, M. R., & Places, Á. S. (2020). “An Action Research for Improving the Sustainability Assessment Framework Instruments.” Sustainability, 12(4), 1682. doi:10.3390/su12041682
  198. Grimal, L., Marty, P., Perez, S., Troussier, N., Perpignan, C., & Reyes, T. (2020). “Case study: located pedagogical situations to improve global sustainable skills in engineering education and universities.” Procedia CIRP, 90, 766–771. doi:10.1016/j.procir.2020.02.136
  199. Birhane, A., & Van Dijk, J. (2020). “Robot Rights?: Let’s Talk about Human Welfare Instead.” In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (pp. 207–213). New York NY USA: ACM. doi:10.1145/3375627.3375855
  200. Zong, J. (2020). “From individual consent to collective refusal: changing attitudes toward (mis)use of personal data.” XRDS: Crossroads, The ACM Magazine for Students, 27(2), 26–29. doi:10.1145/3433140
  201. JRC. (2019). EU GPP criteria for EU Green Public, (December).
  202. Ferreboeuf, H. (2019). “Lean ICT - towards digital sobriety (The Shift Project),” (March), 90–90. Retrieved from https://theshiftproject.org
  203. SAWB. (2019). LES VERROUS economiques DE LA TRANSITION.
  204. Fonseca, A., Kazman, R., & Lago, P. (2019). “A Manifesto for Energy-Aware Software.” IEEE Software, 36(6), 79–82. doi:10.1109/MS.2019.2924498
  205. Condori-Fernandez, N., & Lago, P. (2019). “Towards a Software Sustainability-Quality Model: Insights from a Multi-Case Study.” In 2019 13th International Conference on Research Challenges in Information Science (RCIS) (pp. 1–11). Brussels, Belgium: IEEE. doi:10.1109/RCIS.2019.8877084
  206. Wangel, J., Hesselgren, M., Eriksson, E., Broms, L., Kanulf, G., & Ljunggren, A. (2019). “Vitiden: Transforming a policy-orienting scenario to a practice-oriented energy fiction.” Futures, 112, 102440. doi:10.1016/j.futures.2019.102440
  207. Hedin, B., Katzeff, C., Eriksson, E., & Pargman, D. (2019). “A Systematic Review of Digital Behaviour Change Interventions for More Sustainable Food Consumption.” Sustainability, 11(9), 2638. doi:10.3390/su11092638
  208. Widdicks, K., Hazas, M., Bates, O., & Friday, A. (2019). “Streaming, Multi-Screens and YouTube: The New (Unsustainable) Ways of Watching in the Home.” In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–13). Glasgow Scotland Uk: ACM. doi:10.1145/3290605.3300696
  209. Bringezu, S. (2019). “Toward Science-Based and Knowledge-Based Targets for Global Sustainable Resource Use.” Resources, 8(3), 140. doi:10.3390/resources8030140
  210. Lacoste, A., Luccioni, A., Schmidt, V., & Dandres, T. (2019). “Quantifying the Carbon Emissions of Machine Learning.” arXiv:1910.09700 [cs]. Retrieved from http://arxiv.org/abs/1910.09700
  211. Strubell, E., Ganesh, A., & McCallum, A. (2019). “Energy and Policy Considerations for Deep Learning in NLP.” arXiv:1906.02243 [cs]. Retrieved from http://arxiv.org/abs/1906.02243
  212. Zuloaga, F., Schweitzer, J.-P., Anastasio, M., & Arditi, S. (2019). “Coolproducts don’t cost the Earth – Report.” European Environmental Bureau. Retrieved from https://mk0eeborgicuypctuf7e.kinstacdn.com/wp-content/uploads/2019/09/Coolproducts-report.pdf
  213. World Economic Forum. (2019). “A New Circular Vision for Electronics Time for a Global Reboot,” (January), 24–24. Retrieved from http://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf
  214. Rosa, P., Sassanelli, C., & Terzi, S. (2019). “Circular Business Models versus circular benefits: An assessment in the waste from Electrical and Electronic Equipments sector.” Journal of Cleaner Production, 231, 940–952. doi:10.1016/j.jclepro.2019.05.310
  215. Fiore, S., Ibanescu, D., Teodosiu, C., & Ronco, A. (2019). “Improving waste electric and electronic equipment management at full-scale by using material flow analysis and life cycle assessment.” Science of The Total Environment, 659, 928–939. doi:10.1016/j.scitotenv.2018.12.417
  216. Friederich, P., Fediai, A., Kaiser, S., Konrad, M., Jung, N., & Wenzel, W. (2019). “Toward Design of Novel Materials for Organic Electronics.” Advanced Materials, 31(26), 1808256. doi:10.1002/adma.201808256
  217. Lu, X., Miki, T., Takeda, O., Zhu, H., & Nagasaka, T. (2019). Thermodynamic criteria of the end-of-life silicon wafers refining for closing the recycling loop of photovoltaic panels. Science and Technology of Advanced Materials, 20(1), 813–825. doi:10.1080/14686996.2019.1641429
  218. De Meester, S., Nachtergaele, P., Debaveye, S., Vos, P., & Dewulf, J. (2019). Using material flow analysis and life cycle assessment in decision support: A case study on WEEE valorization in Belgium. Resources, Conservation and Recycling, 142(July 2018), 1–9. doi:10.1016/j.resconrec.2018.10.015
  219. Paverd, A., Völp, M., Brasser, F., Schunter, M., Asokan, N., Sadeghi, A.-R., Esteves-Veríssimo, P., et al. (2019). “Sustainable Security & Safety: Challenges and Opportunities.” 4th International Workshop on Security and Dependability of Critical Embedded Real-Time Systems (CERTS 2019). Retrieved from http://www.icri-cars.org/wp-content/uploads/2019/01/s3-vision.pdf
  220. Hazas, M., & Nathan, L. (2019). “Digital Technology and Sustainability: Engaging the Paradox.” Routledge Studies in Sustainability (1st ed.). Routledge. Retrieved from https://www.routledge.com/Digital-Technology-and-Sustainability-Engaging-the-Paradox/Hazas-Nathan/p/book/9780367271169
  221. Köhler, S., & Pizzol, M. (2019). “Life Cycle Assessment of Bitcoin Mining.” Environmental Science & Technology, 53(23), 13598–13606. doi:10.1021/acs.est.9b05687
  222. Hickel, J. (2019). “The contradiction of the sustainable development goals: Growth versus ecology on a finite planet.” Sustainable Development, 27(5), 873–884. doi:10.1002/sd.1947
  223. Masanet, E., Shehabi, A., Lei, N., Vranken, H., Koomey, J., & Malmodin, J. (2019). “Implausible projections overestimate near-term Bitcoin CO2 emissions.” Nature Climate Change, 9(9), 653–654. doi:10.1038/s41558-019-0535-4
  224. Mora, C., Rollins, R. L., Taladay, K., Kantar, M. B., Chock, M. K., Shimada, M., & Franklin, E. C. (2019). “Mora et al. reply.” Nature Climate Change, 9(9), 658–659. doi:10.1038/s41558-019-0538-1
  225. Rifat, M. R., Prottoy, H. M., & Ahmed, S. I. (2019). “The Breaking Hand: Skills, Care, and Sufferings of the Hands of an Electronic Waste Worker in Bangladesh.” In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–14). Glasgow Scotland Uk: ACM. doi:10.1145/3290605.3300253
  226. Fredericks, J., Parker, C., Caldwell, G. A., Foth, M., Davis, H., & Tomitsch, M. (2019). “Designing Smart for Sustainable Communities: Reflecting on the Role of HCI for Addressing the Sustainable Development Goals.” In Proceedings of the 31st Australian Conference on Human-Computer-Interaction (pp. 12–15). Fremantle WA Australia: ACM. doi:10.1145/3369457.3369550
  227. Proske, M., & Jaeger-Erben, M. (2019). “Decreasing obsolescence with modular smartphones? – An interdisciplinary perspective on lifecycles.” Journal of Cleaner Production, 223, 57–66. doi:10.1016/j.jclepro.2019.03.116
  228. McLaren, D. P., Tyfield, D. P., Willis, R., Szerszynski, B., & Markusson, N. O. (2019). “Beyond ‘Net-Zero’: A Case for Separate Targets for Emissions Reduction and Negative Emissions.” Frontiers in Climate, 1, 4. doi:10.3389/fclim.2019.00004
  229. Uzaman, S. K., Khan, A. ur R., Shuja, J., Maqsood, T., Rehman, F., & Mustafa, S. (2019). “A Systems Overview of Commercial Data Centers: Initial Energy and Cost Analysis.” International Journal of Information Technology and Web Engineering (IJITWE), 14(1), 42–65. doi:10.4018/IJITWE.2019010103
  230. Colakides, Y., Garrett, M., & Gloerich, I. (Eds.). (2019). State machines: reflections and actions at the edge of digital citizenship, finance, and art. Amsterdam: Institute of Network Cultures.
  231. Preist, C., Schien, D., & Shabajee, P. (2019). “Evaluating Sustainable Interaction Design of Digital Services: The Case of YouTube.” In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19 (pp. 1–12). Glasgow, Scotland Uk: Association for Computing Machinery. doi:10.1145/3290605.3300627
  232. Vanham, D., Medarac, H., Schyns, J. F., Hogeboom, R. J., & Magagna, D. (2019). “The consumptive water footprint of the European Union energy sector.” Environmental Research Letters, 14(10), 104016. doi:10.1088/1748-9326/ab374a
  233. Jacobson, M. Z. (2019). “The health and climate impacts of carbon capture and direct air capture.” Energy & Environmental Science, 12(12), 3567–3574. doi:10.1039/C9EE02709B
  234. Hagedorn, G., Kalmus, P., Mann, M., Vicca, S., Van den Berge, J., van Ypersele, J.-P., Bourg, D., et al. (2019). “Concerns of young protesters are justified.” (J. Sills, Ed.)Science, 364(6436), 139–140. doi:10.1126/science.aax3807
  235. Alhubaiti, O., & El-Alfy, E.-S. M. (2019). “Impact of Spectre/Meltdown Kernel Patches on Crypto-Algorithms on Windows Platforms.” In 2019 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) (pp. 1–6). Sakhier, Bahrain: IEEE. doi:10.1109/3ICT.2019.8910282
  236. Ahmed, S. I., Haque, M. R., Haider, I., Chen, J., & Dell, N. (2019). “‘Everyone Has Some Personal Stuff’: Designing to Support Digital Privacy with Shared Mobile Phone Use in Bangladesh.” In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–13). Glasgow Scotland Uk: ACM. doi:10.1145/3290605.3300410
  237. Duboc, L., Betz, S., Penzenstadler, B., Akinli Kocak, S., Chitchyan, R., Leifler, O., Porras, J., et al. (2019). “Do we Really Know What we are Building? Raising Awareness of Potential Sustainability Effects of Software Systems in Requirements Engineering.” In 2019 IEEE 27th International Requirements Engineering Conference (RE) (pp. 6–16). Jeju Island, Korea (South): IEEE. doi:10.1109/RE.2019.00013
  238. Ott, D., Peikert, C., & participants, other workshop. (2019). “Identifying Research Challenges in Post Quantum Cryptography Migration and Cryptographic Agility.” arXiv:1909.07353 [cs]. Retrieved from http://arxiv.org/abs/1909.07353
  239. Schischke, K., Proske, M., Nissen, N. F., & Schneider-Ramelow, M. (2019). “Impact of modularity as a circular design strategy on materials use for smart mobile devices.” MRS Energy & Sustainability, 6(1), 16. doi:10.1557/mre.2019.17
  240. Schischke, K., Manessis, D., Pawlikowski, J., Kupka, T., Krivec, T., Pamminger, R., Glaser, S., et al. (2019). “Embedding as a key Board-Level Technology for Modularization and Circular Design of Smart Mobile Products: Environmental Assessment.” In 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC) (pp. 1–8). Pisa, Italy: IEEE. doi:10.23919/EMPC44848.2019.8951816
  241. Clemm, C., Nissen, N. F., Schischke, K., Dimitrova, G., Marwede, M., & Lang, K.-D. (2019). “Implications of the Circular Economy for Electronic Products.” In A. H. Hu, M. Matsumoto, T. C. Kuo, & S. Smith (Eds.), Technologies and Eco-innovation towards Sustainability I (pp. 91–104). Singapore: Springer Singapore. doi:10.1007/978-981-13-1181-9_8
  242. Benjamin, R. (2019). Race after technology: abolitionist tools for the new Jim code. Medford, MA: Polity.
  243. Benjamin, R. (Ed.). (2019). Captivating technology: race, carceral technoscience, and liberatory imagination in everyday life. Durham: Duke University Press.
  244. Sousa, B. L., Ferreira, M. M., Ferreira, K. A. M., & Bigonha, M. A. S. (2019). “Software Engineering Evolution: The History Told by ICSE.” In Proceedings of the XXXIII Brazilian Symposium on Software Engineering (pp. 17–21). Salvador Brazil: ACM. doi:10.1145/3350768.3350794
  245. Widdicks, K., & Pargman, D. (2019). “Breaking the Cornucopian Paradigm: Towards Moderate Internet Use in Everyday Life.” In Proceedings of the Fifth Workshop on Computing within Limits (pp. 1–8). Lappeenranta Finland: ACM. doi:10.1145/3338103.3338105
  246. CEU. JRC. (2019). “Consumption and consumer footprint: methodology and results : indicators and assessment of the environmental impact of European consumption.” LU: Publications Office. Retrieved from https://data.europa.eu/doi/10.2760/98570
  247. Kline, D., Parshook, N., Johnson, A., Stine, J. E., Stanchina, W., Brunvand, E., & Jones, A. K. (2018). Sustainable IC design and fabrication. 2017 8th International Green and Sustainable Computing Conference, IGSC 2017, 2017-Octob, 1–8. doi:10.1109/IGCC.2017.8323572
  248. Nardi, B., Tomlinson, B., Patterson, D. J., Chen, J., Pargman, D., Raghavan, B., & Penzenstadler, B. (2018). Computing within limits. Communications of the ACM, 61(10), 86–93. doi:10.1145/3183582
  249. EFLA, Kjeld, A., Ingólfsdóttir, G. M., Bjarnadóttir, H. J., & Jónsson, R. (2018). “Life Cycle Assessment for Transmission Towers.” Retrieved from https://www.statnett.no/contentassets/1aa0ae3324714e939efc762f029b0691/life-cycle-assessment-for-transmission-towers—a-comparative-study-of-three-tower-types.pdf
  250. Morley, J., Widdicks, K., & Hazas, M. (2018). “Digitalisation, energy and data demand: The impact of Internet traffic on overall and peak electricity consumption.” Energy Research & Social Science, 38, 128–137. doi:10.1016/j.erss.2018.01.018
  251. Venters, C. C., Capilla, R., Betz, S., Penzenstadler, B., Crick, T., Crouch, S., Nakagawa, E. Y., et al. (2018). “Software sustainability: Research and practice from a software architecture viewpoint.” Journal of Systems and Software, 138, 174–188. doi:10.1016/j.jss.2017.12.026
  252. Condori-Fernandez, N., & Lago, P. (2018). “Characterizing the contribution of quality requirements to software sustainability.” Journal of Systems and Software, 137, 289–305. doi:10.1016/j.jss.2017.12.005
  253. Malmodin, J., & Lundén, D. (2018). “The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015.” Sustainability, 10(9), 3027. doi:10.3390/su10093027
  254. Buolamwini, J., & Gebru, T. (2018). “Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification.” Proceedings of the 1st Conference on Fairness, Accountability and Transparency. Retrieved from http://proceedings.mlr.press/v81/buolamwini18a.html
  255. Pärssinen, M., Kotila, M., Cuevas, R., Phansalkar, A., & Manner, J. (2018). “Environmental impact assessment of online advertising.” Environmental Impact Assessment Review, 73, 177–200. doi:10.1016/j.eiar.2018.08.004
  256. Waste electrical and electronic equipment (weee) handbook. (2018). Place of publication not identified: WOODHEAD.
  257. Dong, Y., Bao, C., & Kim, W. S. (2018). “Sustainable Additive Manufacturing of Printed Circuit Boards.” Joule, 2(4), 579–582. doi:10.1016/j.joule.2018.03.015
  258. Belkhir, L., & Elmeligi, A. (2018). “Assessing ICT global emissions footprint: Trends to 2040 & recommendations.” Journal of Cleaner Production, 177, 448–463. doi:10.1016/j.jclepro.2017.12.239
  259. Jones, N. (2018). “How to stop data centres from gobbling up the world’s electricity.” Nature, 561(7722), 163–166. doi:10.1038/d41586-018-06610-y
  260. de Vries, A. (2018). “Bitcoin’s Growing Energy Problem.” Joule, 2(5), 801–805. doi:10.1016/j.joule.2018.04.016
  261. Haffar, M., & Searcy, C. (2018). “Target-setting for ecological resilience: Are companies setting environmental sustainability targets in line with planetary thresholds?” Business Strategy and the Environment, 27(7), 1079–1092. doi:10.1002/bse.2053
  262. Aslan, J., Mayers, K., Koomey, J. G., & France, C. (2018). “Electricity Intensity of Internet Data Transmission: Untangling the Estimates: Electricity Intensity of Data Transmission.” Journal of Industrial Ecology, 22(4), 785–798. doi:10.1111/jiec.12630
  263. Mora, C., Rollins, R. L., Taladay, K., Kantar, M. B., Chock, M. K., Shimada, M., & Franklin, E. C. (2018). “Bitcoin emissions alone could push global warming above 2°C.” Nature Climate Change, 8(11), 931–933. doi:10.1038/s41558-018-0321-8
  264. van der Velden, M. (2018). “ICT and Sustainability: Looking Beyond the Anthropocene.” In D. Kreps, C. Ess, L. Leenen, & K. Kimppa (Eds.), This Changes Everything – ICT and Climate Change: What Can We Do? (Vol. 537, pp. 166–180). Cham: Springer International Publishing. doi:10.1007/978-3-319-99605-9_12
  265. Wood, R., Stadler, K., Simas, M., Bulavskaya, T., Giljum, S., Lutter, S., & Tukker, A. (2018). “Growth in Environmental Footprints and Environmental Impacts Embodied in Trade: Resource Efficiency Indicators from EXIOBASE3: Growth in Environmental Impacts Embodied in Trade.” Journal of Industrial Ecology, 22(3), 553–564. doi:10.1111/jiec.12735
  266. Rao, N. D., Mastrucci, A., & Min, J. (2018). “Applying LCA to Estimate Development Energy Needs: The Cases of India and Brazil.” In E. Benetto, K. Gericke, & M. Guiton (Eds.), Designing Sustainable Technologies, Products and Policies (pp. 397–406). Cham: Springer International Publishing. doi:10.1007/978-3-319-66981-6_44
  267. Durairajan, R., Barford, C., & Barford, P. (2018). “Lights Out: Climate Change Risk to Internet Infrastructure.” In Proceedings of the Applied Networking Research Workshop, ANRW ’18 (pp. 9–15). Montreal, QC, Canada: Association for Computing Machinery. doi:10.1145/3232755.3232775
  268. Townsend, J. H., & Coroama, V. C. (2018). “Digital Acceleration of Sustainability Transition: The Paradox of Push Impacts.” Sustainability, 10(8), 2816. doi:10.3390/su10082816
  269. Ringenson, T., Arnfalk, P., Kramers, A., & Sopjani, L. (2018). “Indicators for Promising Accessibility and Mobility Services.” Sustainability, 10(8), 2836. doi:10.3390/su10082836
  270. Ringenson, T., Höjer, M., Kramers, A., & Viggedal, A. (2018). “Digitalization and Environmental Aims in Municipalities.” Sustainability, 10(4), 1278. doi:10.3390/su10041278
  271. Lehmann, A., & Tackmann, B. (2018). “Updatable Encryption with Post-Compromise Security.” In J. B. Nielsen & V. Rijmen (Eds.), Advances in Cryptology – EUROCRYPT 2018 (Vol. 10822, pp. 685–716). Cham: Springer International Publishing. doi:10.1007/978-3-319-78372-7_22
  272. Prout, A., Arcand, W., Bestor, D., Bergeron, B., Byun, C., Gadepally, V., Houle, M., et al. (2018). “Measuring the Impact of Spectre and Meltdown.” In 2018 IEEE High Performance extreme Computing Conference (HPEC) (pp. 1–5). Waltham, MA: IEEE. doi:10.1109/HPEC.2018.8547554
  273. Nathan, L. P., & Perreault, A. (2018). “Indigenous initiatives and information studies: Unlearning in the classroom.” The International Journal of Information, Diversity, & Inclusion (IJIDI), 2(1/2). doi:10.33137/ijidi.v2i1/2.32212
  274. Bates, O., Thomas, V., Remy, C., Nathan, L. P., Mann, S., & Friday, A. (2018). “The Future of HCI and Sustainability: Championing Environmental and Social Justice.” In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1–4). Montreal QC Canada: ACM. doi:10.1145/3170427.3185365
  275. Bates, O., Thomas, V., Remy, C., Friday, A., Nathan, L., Hazas, M., & Mann, S. (2018). “Championing environmental and social justice: embracing, embedding, and promoting broader notions of sustainability in HCI.” Interactions, 25(5), 60–67. doi:10.1145/3236677
  276. Remy, C., Bates, O., Dix, A., Thomas, V., Hazas, M., Friday, A., & Huang, E. M. (2018). “Evaluation Beyond Usability: Validating Sustainable HCI Research.” In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1–14). Montreal QC Canada: ACM. doi:10.1145/3173574.3173790
  277. The Global E-waste Monitor 2017. (2017).
  278. Wall, F., Rollat, A., & Pell, R. S. (2017). Responsible sourcing of critical metals. Elements, 13(5), 313–318. doi:10.2138/gselements.13.5.313
  279. Jang, E., Johnson, M., Burnell, E., & Heimerl, K. (2017). Unplanned obsolescence: Hardware and software after collapse. LIMITS 2017 - Proceedings of the 2017 Workshop on Computing Within Limits, 93–101. doi:10.1145/3080556.3080566
  280. Rousseaux, P., Gremy-Gros, C., Bonnin, M., Henriel-Ricordel, C., Bernard, P., Floury, L., Staigre, G., et al. (2017). “Eco-tool-seeker”A new and unique business guide for choosing ecodesign tools. Journal of Cleaner Production, 151, 546–577. doi:10.1016/j.jclepro.2017.03.089
  281. Kline, D., Parshook, N., Ge, X., Brunvand, E., Melhem, R., Chrysanthis, P. K., & Jones, A. K. (2017). Holistically evaluating the environmental impacts in modern computing systems. 2016 7th International Green and Sustainable Computing Conference, IGSC 2016, (Section III), 1–8. doi:10.1109/IGCC.2016.7892605
  282. A. Chagnes, G. C., ... T. Retegan. (2017). WEEE Recycling Research, Development, and Policies.
  283. Wolfram, N., Lago, P., & Osborne, F. (2017). “Sustainability in software engineering.” In 2017 Sustainable Internet and ICT for Sustainability (SustainIT) (pp. 1–7). Funchal: IEEE. doi:10.23919/SustainIT.2017.8379798
  284. Calero, C., & Piattini, M. (2017). “Puzzling out Software Sustainability.” Sustainable Computing: Informatics and Systems, 16, 117–124. doi:10.1016/j.suscom.2017.10.011
  285. European Commission. Joint Research Centre. (2017). “Critical raw materials and the circular economy: background report.” LU: Publications Office. Retrieved from https://data.europa.eu/doi/10.2760/378123
  286. Arshad, R., Zahoor, S., Shah, M. A., Wahid, A., & Yu, H. (2017). “Green IoT: An Investigation on Energy Saving Practices for 2020 and Beyond.” IEEE Access, 5, 15667–15681. doi:10.1109/ACCESS.2017.2686092
  287. Cooper, D. R., & Gutowski, T. G. (2017). “The Environmental Impacts of Reuse: A Review: The Environmental Impacts of Reuse: A Review.” Journal of Industrial Ecology, 21(1), 38–56. doi:10.1111/jiec.12388
  288. Zink, T., & Geyer, R. (2017). “Circular Economy Rebound: Circular Economy Rebound.” Journal of Industrial Ecology, 21(3), 593–602. doi:10.1111/jiec.12545
  289. Cook, G., & Jardim, E. (2017). “Guide to Greener Electronics 2017.” Greenpeace. Retrieved from https://www.greenpeace.org/usa/reports/greener-electronics-2017/
  290. Ahmed, syed, Guha, S., Rifat, M., Shezan, F., & Dell, N. (2017). “Privacy Vulnerabilities in the Practices of Repairing Broken Digital Artifacts in Bangladesh.” Information Technologies and International Development. Retrieved from https://epublications.marquette.edu/mscs_fac/628
  291. Duclos, L., Lupsea, M., Mandil, G., Svecova, L., Thivel, P.-X., & Laforest, V. (2017). “Environmental assessment of proton exchange membrane fuel cell platinum catalyst recycling.” Journal of Cleaner Production, 142, 2618–2628. doi:10.1016/j.jclepro.2016.10.197
  292. Couto, M., Pereira, R., Ribeiro, F., Rua, R., & Saraiva, J. (2017). “Towards a Green Ranking for Programming Languages.” In Proceedings of the 21st Brazilian Symposium on Programming Languages, SBLP 2017 (pp. 1–8). Fortaleza, CE, Brazil: Association for Computing Machinery. doi:10.1145/3125374.3125382
  293. Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J. P., & Saraiva, J. (2017). “Energy efficiency across programming languages: how do energy, time, and memory relate?” In Proceedings of the 10th ACM SIGPLAN International Conference on Software Language Engineering, SLE 2017 (pp. 256–267). Vancouver, BC, Canada: Association for Computing Machinery. doi:10.1145/3136014.3136031
  294. Wu, Q., Li, G. Y., Chen, W., Ng, D. W. K., & Schober, R. (2017). An Overview of Sustainable Green 5G Networks. IEEE Wireless Communications, 24(4), 72–80. doi:10.1109/MWC.2017.1600343
  295. Mah, A. (2017). “Environmental justice in the age of big data: challenging toxic blind spots of voice, speed, and expertise.” Environmental Sociology, 3(2), 122–133. doi:10.1080/23251042.2016.1220849
  296. Supran, G., & Oreskes, N. (2017). “Assessing ExxonMobil’s climate change communications (1977–2014).” Environmental Research Letters, 12(8), 084019. doi:10.1088/1748-9326/aa815f
  297. Ringenson, T., Eriksson, E., Börjesson Rivera, M., & Wangel, J. (2017). “The Limits of the Smart Sustainable City.” In Proceedings of the 2017 Workshop on Computing Within Limits, LIMITS ’17 (pp. 3–9). Santa Barbara, California, USA: Association for Computing Machinery. doi:10.1145/3080556.3080559
  298. Eder-Neuhauser, P., Zseby, T., Fabini, J., & Vormayr, G. (2017). “Cyber attack models for smart grid environments.” Sustainable Energy, Grids and Networks, 12, 10–29. doi:10.1016/j.segan.2017.08.002
  299. Raworth, K. (2017). Doughnut economics: seven ways to think like a 21st century economist. White River Junction, Vermont: Chelsea Green Publishing.
  300. Weng, Z., Haque, N., Mudd, G. M., & Jowitt, S. M. (2016). “Assessing the energy requirements and global warming potential of the production of rare earth elements.” Journal of Cleaner Production, 139, 1282–1297. doi:10.1016/j.jclepro.2016.08.132
  301. Andrae, B. A. S. G. (2016). Life-Cycle Assessment of Consumer Electronics. IEEE Consumer Electronics Magazine Volume:5 , Issue: 1, (January), 51–60. doi:10.1109/MCE.2015.2484639
  302. Stahel, W. R. (2016). “The circular economy.” Nature, 531(7595), 435–438. doi:10.1038/531435a
  303. Ercan, M., Malmodin, J., Bergmark, P., Kimfalk, E., & Nilsson, E. (2016). “Life Cycle Assessment of a Smartphone.” In Proceedings of ICT for Sustainability 2016. Amsterdam, the Netherlands: Atlantis Press. doi:10.2991/ict4s-16.2016.15
  304. Poggiali, J. (2016). “Incorporating Ethical Consumption into Electronic Device Acquisition: A Proposal.” portal: Libraries and the Academy, 16(3), 581–597. doi:10.1353/pla.2016.0037
  305. Krumay, B., & Brandtweiner, R. (2016). “Measuring the environmental impact of ICT hardware.” International Journal of Sustainable Development and Planning, 11(6), 1064–1076. doi:10.2495/SDP-V11-N6-1064-1076
  306. Tan, M. J., Owh, C., Chee, P. L., Kyaw, A. K. K., Kai, D., & Loh, X. J. (2016). “Biodegradable electronics: cornerstone for sustainable electronics and transient applications.” Journal of Materials Chemistry C, 4(24), 5531–5558. doi:10.1039/C6TC00678G
  307. Ahmed, S. I., Guha, S., Rifat, M. R., Shezan, F. H., & Dell, N. (2016). “Privacy in Repair: An Analysis of the Privacy Challenges Surrounding Broken Digital Artifacts in Bangladesh.” In Proceedings of the Eighth International Conference on Information and Communication Technologies and Development (pp. 1–10). Ann Arbor MI USA: ACM. doi:10.1145/2909609.2909661
  308. Schischke, K., Proske, M., Nissen, N. F., & Lang, K.-D. (2016). “Modular products: Smartphone design from a circular economy perspective.” In 2016 Electronics Goes Green 2016+ (EGG) (pp. 1–8). Berlin: IEEE. doi:10.1109/EGG.2016.7829810
  309. Proske, M., Winzer, J., Marwede, M., Nissen, N. F., & Lang, K.-D. (2016). “Obsolescence of electronics - the example of smartphones.” In 2016 Electronics Goes Green 2016+ (EGG) (pp. 1–8). Berlin: IEEE. doi:10.1109/EGG.2016.7829852
  310. Kristov, L., De Martini, P., & Taft, J. D. (2016). A Tale of Two Visions: Designing a Decentralized Transactive Electric System. IEEE Power and Energy Magazine, 14(3), 63–69. doi:10.1109/MPE.2016.2524964
  311. Bonds, E. (2016). “Upending Climate Violence Research: Fossil Fuel Corporations and the Structural Violence of Climate Change.” Human Ecology Review, 22(2). doi:10.22459/HER.22.02.2016.01
  312. Espana Cubillo, S., & Brinkkemper, S. (2016). Responsible software: A research agenda to help enterprises become more sustainable.
  313. Golumbia, D. (2016). The politics of Bitcoin: software as right-wing extremism. Forerunners: ideas first from the University of Minnesota Press. Minneapolis: University of Minnesota Press.
  314. Cohn-Gordon, K., Cremers, C., & Garratt, L. (2016). “On Post-compromise Security.” In 2016 IEEE 29th Computer Security Foundations Symposium (CSF) (pp. 164–178). Lisbon: IEEE. doi:10.1109/CSF.2016.19
  315. Raghavan, B., Nardi, B., Lovell, S. T., Norton, J., Tomlinson, B., & Patterson, D. J. (2016). “Computational Agroecology: Sustainable Food Ecosystem Design.” In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (pp. 423–435). San Jose California USA: ACM. doi:10.1145/2851581.2892577
  316. Tjoa, A. M., & Tjoa, S. (2016). “The Role of ICT to Achieve the UN Sustainable Development Goals (SDG).” In F. J. Mata & A. Pont (Eds.), ICT for Promoting Human Development and Protecting the Environment (Vol. 481, pp. 3–13). Cham: Springer International Publishing. doi:10.1007/978-3-319-44447-5_1
  317. Becker, C., Betz, S., Chitchyan, R., Duboc, L., Easterbrook, S. M., Penzenstadler, B., Seyff, N., et al. (2016). “Requirements: The Key to Sustainability.” IEEE Software, 33(1), 56–65. doi:10.1109/MS.2015.158
  318. Singh, K., & Junnarkar, M. (2016). “The Well-Being of Information Technology Professionals.” In L. G. Oades, M. F. Steger, A. D. Fave, & J. Passmore (Eds.), The Wiley Blackwell Handbook of the Psychology of Positivity and Strengths&;#x02010;Based Approaches at Work (pp. 491–507). Chichester, UK: John Wiley &;#38; Sons, Ltd. doi:10.1002/9781118977620.ch25
  319. Preist, C., Schien, D., & Blevis, E. (2016). “Understanding and Mitigating the Effects of Device and Cloud Service Design Decisions on the Environmental Footprint of Digital Infrastructure.” In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 1324–1337). San Jose California USA: ACM. doi:10.1145/2858036.2858378
  320. Villard, A., Lelah, A., & Brissaud, D. (2015). Drawing a chip environmental profile: Environmental indicators for the semiconductor industry. Journal of Cleaner Production, 86, 98–109. doi:10.1016/j.jclepro.2014.08.061
  321. Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P., Reck, B. K., & Turner, B. L. (2015). Criticality of metals and metalloids. Proceedings of the National Academy of Sciences of the United States of America, 112(14), 4257–4262. doi:10.1073/pnas.1500415112
  322. Regenfelder, M., Schischke, K., Ebelt, S., & Slowak, A. P. (2015). Achieving ‘ Sustainable Smart Mobile Devices Lifecycles Through Advanced Re-design , Reliability , and Re-use and Remanufacturing Technology ,’ 1–9.
  323. Hilty, L., & Aebischer, B. (2015). Recycling of ICT Equipment in Industrialized and Developing Countries. Advances in intelligent systems and computing, 310, 223–241. doi:10.1007/978-3-319-09228-7
  324. Hilty, L., & Aebischer, B. (2015). “ICT Innovations for Sustainability.” Advances in Intelligent Systems and Computing (Vol. 310). Springer International Publishing. Retrieved from https://www.springer.com/gp/book/9783319092270
  325. Lago, P. (2015). “Challenges and Opportunities for Sustainable Software.” In 2015 IEEE/ACM 5th International Workshop on Product Line Approaches in Software Engineering (pp. 1–2). Florence, Italy: IEEE. doi:10.1109/PLEASE.2015.8
  326. Lago, P., Koçak, S. A., Crnkovic, I., & Penzenstadler, B. (2015). “Framing sustainability as a property of software quality.” Communications of the ACM, 58(10), 70–78. doi:10.1145/2714560
  327. Aebischer, B., & Hilty, L. M. (2015). “The Energy Demand of ICT: A Historical Perspective and Current Methodological Challenges.” In L. M. Hilty & B. Aebischer (Eds.), ICT Innovations for Sustainability (Vol. 310, pp. 71–103). Cham: Springer International Publishing. doi:10.1007/978-3-319-09228-7_4
  328. Andrae, A., & Edler, T. (2015). “On Global Electricity Usage of Communication Technology: Trends to 2030.” Challenges, 6(1), 117–157. doi:10.3390/challe6010117
  329. Suckling, J., & Lee, J. (2015). “Redefining scope: the true environmental impact of smartphones?” The International Journal of Life Cycle Assessment, 20(8), 1181–1196. doi:10.1007/s11367-015-0909-4
  330. Sarath, P., Bonda, S., Mohanty, S., & Nayak, S. K. (2015). “Mobile phone waste management and recycling: Views and trends.” Waste Management, 46, 536–545. doi:10.1016/j.wasman.2015.09.013
  331. Cucchiella, F., D’Adamo, I., Lenny Koh, S. C., & Rosa, P. (2015). “Recycling of WEEEs: An economic assessment of present and future e-waste streams.” Renewable and Sustainable Energy Reviews, 51, 263–272. doi:10.1016/j.rser.2015.06.010
  332. Gui, J., Mcilroy, S., Nagappan, M., & Halfond, W. G. J. (2015). “Truth in Advertising: The Hidden Cost of Mobile Ads for Software Developers.” In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (pp. 100–110). Florence, Italy: IEEE. doi:10.1109/ICSE.2015.32
  333. Hong, J., Shi, W., Wang, Y., Chen, W., & Li, X. (2015). “Life cycle assessment of electronic waste treatment.” Waste Management, 38, 357–365. doi:10.1016/j.wasman.2014.12.022
  334. Umair, S., Björklund, A., & Petersen, E. E. (2015). “Social impact assessment of informal recycling of electronic ICT waste in Pakistan using UNEP SETAC guidelines.” Resources, Conservation and Recycling, 95, 46–57. doi:10.1016/j.resconrec.2014.11.008
  335. Wäger, P. A., Hischier, R., & Widmer, R. (2015). “The Material Basis of ICT.” In L. M. Hilty & B. Aebischer (Eds.), ICT Innovations for Sustainability (Vol. 310, pp. 209–221). Cham: Springer International Publishing. doi:10.1007/978-3-319-09228-7_12
  336. Gossart, C. (2015). “Rebound effects and ICT : a review of the literature.” ICT innovations for sustainability, Advances in Intelligent Systems and Computing. Retrieved from https://doi.org/10.1007/978-3-319-09228-7_26
  337. Krabbe, O., Linthorst, G., Blok, K., Crijns-Graus, W., van Vuuren, D. P., Höhne, N., Faria, P., et al. (2015). “Aligning corporate greenhouse-gas emissions targets with climate goals.” Nature Climate Change, 5(12), 1057–1060. doi:10.1038/nclimate2770
  338. Ahmed, S. I., Jackson, S. J., & Rifat, M. R. (2015). “Learning to fix: knowledge, collaboration and mobile phone repair in Dhaka, Bangladesh.” In Proceedings of the Seventh International Conference on Information and Communication Technologies and Development (pp. 1–10). Singapore Singapore: ACM. doi:10.1145/2737856.2738018
  339. Naumann, S., Kern, E., Dick, M., & Johann, T. (2015). “Sustainable Software Engineering: Process and Quality Models, Life Cycle, and Social Aspects.” In L. M. Hilty & B. Aebischer (Eds.), ICT Innovations for Sustainability (Vol. 310, pp. 191–205). Cham: Springer International Publishing. doi:10.1007/978-3-319-09228-7_11
  340. Benessia, A., & Funtowicz, S. (2015). “Sustainability and techno-science: What do we want to sustain and for whom?” International Journal of Sustainable Development, 18(4), 329. doi:10.1504/IJSD.2015.072666
  341. Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Penzenstadler, B., Seyff, N., & Venters, C. C. (2015). “Sustainability Design and Software: The Karlskrona Manifesto.” In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (pp. 467–476). Florence, Italy: IEEE. doi:10.1109/ICSE.2015.179
  342. Andrae, A., & Vaija, M. (2014). To Which Degree Does Sector Specific Standardization Make Life Cycle Assessments Comparable?—The Case of Global Warming Potential of Smartphones. Challenges, 5(2), 409–429. doi:10.3390/challe5020409
  343. Hilty, L. M., Aebischer, B., & Rizzoli, A. E. (2014). Modeling and evaluating the sustainability of smart solutions. Environmental Modelling and Software, 56, 1–5. doi:10.1016/j.envsoft.2014.04.001
  344. Baudry, I. (2014). Caractérisation des process de fabrication microélectroniques pour l ’ éco-conception des futures technologies ( partenaire industriel STMicroelectronics ) To cite this version : HAL Id : tel-00957329 Caractérisation environnementale des procédés de fabri.
  345. Malmodin, J., Lundén, D., Moberg, Å., Andersson, G., & Nilsson, M. (2014). “Life Cycle Assessment of ICT: Carbon Footprint and Operational Electricity Use from the Operator, National, and Subscriber Perspective in Sweden.” Journal of Industrial Ecology, 18(6), 829–845. doi:10.1111/jiec.12145
  346. Lago, P., Meyer, N., Morisio, M., Müller, H. A., & Scanniello, G. (2014). “Leveraging ‘energy efficiency to software users’: summary of the second GREENS workshop, at ICSE 2013.” ACM SIGSOFT Software Engineering Notes, 39(1), 36–38. doi:10.1145/2557833.2557859
  347. Zink, T., Maker, F., Geyer, R., Amirtharajah, R., & Akella, V. (2014). “Comparative life cycle assessment of smartphone reuse: repurposing vs. refurbishment.” The International Journal of Life Cycle Assessment, 19(5), 1099–1109. doi:10.1007/s11367-014-0720-7
  348. Arushanyan, Y., Ekener-Petersen, E., & Finnveden, G. (2014). “Lessons learned – Review of LCAs for ICT products and services.” Computers in Industry, 65(2), 211–234. doi:10.1016/j.compind.2013.10.003
  349. Rasmussen, K., Wilson, A., & Hindle, A. (2014). “Green mining: energy consumption of advertisement blocking methods.” In Proceedings of the 3rd International Workshop on Green and Sustainable Software - GREENS 2014 (pp. 38–45). Hyderabad, India: ACM Press. doi:10.1145/2593743.2593749
  350. Liu, J., Yang, C., Wu, H., Lin, Z., Zhang, Z., Wang, R., Li, B., et al. (2014). “Future paper based printed circuit boards for green electronics: fabrication and life cycle assessment.” Energy Environ. Sci., 7(11), 3674–3682. doi:10.1039/C4EE01995D
  351. Bossuet, L. (2014). “Sustainable electronics: On the trail of reconfigurable computing.” Sustainable Computing: Informatics and Systems, 4(3), 196–202. doi:10.1016/j.suscom.2014.07.001
  352. Jackson, S. J., Ahmed, S. I., & Rifat, M. R. (2014). “Learning, innovation, and sustainability among mobile phone repairers in Dhaka, Bangladesh.” In Proceedings of the 2014 conference on Designing interactive systems (pp. 905–914). Vancouver BC Canada: ACM. doi:10.1145/2598510.2598576
  353. Penzenstadler, B., Raturi, A., Richardson, D., & Tomlinson, B. (2014). “Safety, Security, Now Sustainability: The Nonfunctional Requirement for the 21st Century.” IEEE Software, 31(3), 40–47. doi:10.1109/MS.2014.22
  354. Peiró, L. T., Méndez, G. V., & Ayres, R. U. (2013). Material flow analysis of scarce metals: Sources, functions, end-uses and aspects for future supply. Environmental Science and Technology, 47(6), 2939–2947. doi:10.1021/es301519c
  355. Boyd, S. (2013). Life-Cycle Assessment of Semiconductors (Vol. 53). doi:10.1017/CBO9781107415324.004
  356. Jones, A. K., Liao, L., Collinge, W. O., Xu, H., Schaefer, L. A., Landis, A. E., & Bilec, M. M. (2013). Green computing: A life cycle perspective. 2013 International Green Computing Conference Proceedings, IGCC 2013, 1–6. doi:10.1109/IGCC.2013.6604497
  357. Jones, A. K., Chen, Y., Collinge, W. O., Xu, H., Schaefer, L. A., Landis, A. E., & Bilec, M. M. (2013). Considering fabrication in sustainable computing. IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD, 206–210. doi:10.1109/ICCAD.2013.6691120
  358. G.EN.ESI Education Centre. (2013). Introduction to Eco-design. G.EN.ESI Education Centre, 1–3.
  359. Mike Ashby, D. F., Jennifer Bruce. (2013). “Materials and Sustainable Development - a White paper.” Granta Design, (May), 1–45. Retrieved from http://lewis.upc.es/ ricksellens/final/74/1-Papers-SustainableTechnology.pdf
  360. Bozzelli, P., Quing, G., & Lago, P. (2013). “A systematic literature review on green software metrics.” Retrieved from https://research.vu.nl/files/910331/SLR%20GreenMetrics.pdf
  361. Lago, P., Kazman, R., Meyer, N., Morisio, M., Müller, H. A., & Paulisch, F. (2013). “Exploring initial challenges for green software engineering: summary of the first GREENS workshop, at ICSE 2012.” ACM SIGSOFT Software Engineering Notes, 38(1), 31–33. doi:10.1145/2413038.2413062
  362. Bol, D., Vos, J. D., Streel, G. D., Bernard, S., Flandre, D., & Legat, J.-D. (2013). “Green SoCs for a Sustainable Internet-of-Things ( Invited paper ).” IEEE Faible Tension Faible Consommation. Retrieved from https://doi.org/10.1109/FTFC.2013.6577767
  363. Tomlinson, B., Blevis, E., Nardi, B., Patterson, D. J., Silberman, M. S., & Pan, Y. (2013). “Collapse informatics and practice: Theory, method, and design.” ACM Transactions on Computer-Human Interaction, 20(4), 1–26. doi:10.1145/2493431
  364. Thrall, P. H. (2013). “Darwinian Agriculture: how understanding evolution can improve agriculture R.Ford Denison 2012. Princeton University Press.” Evolutionary Applications, 6(2), 408–410. doi:10.1111/eva.12029
  365. Schischke, K., Nissen, N. F., Sherry, J., O’Rafferty, S., O’Connor, F., Sitek, J., Pamminger, R., et al. (2012). Life Cycle thinking in small and medium sized enterprises - Status quo and strategic needs in the electronics sector. Electronics Goes Green 2012+, ECG 2012 - Joint International Conference and Exhibition, Proceedings.
  366. ITU. (2012). “Toolkit on environmental sustainability for the ICT sector,” 314–314. Retrieved from http://www.itu.int/ITU-T/climatechange/ess/index.html
  367. Okrasinski, T., Malian, J., Arnold, J., Tsuriya, M., & Fu, H. (2012). Simplified Approach for Estimating Life Cycle Eco-Impact for Information and Communications Technology Products. Design for Innovative Value Towards a Sustainable Society, (1), 750–755. doi:10.1007/978-94-007-3010-6_152
  368. Røpke, I., & Christensen, T. H. (2012). “Energy impacts of ICT – Insights from an everyday life perspective.” Telematics and Informatics, 29(4), 348–361. doi:10.1016/j.tele.2012.02.001
  369. Kuczynski, J., & Boday, D. J. (2012). “Bio-based materials for high-end electronics applications.” International Journal of Sustainable Development & World Ecology, 19(6), 557–563. doi:10.1080/13504509.2012.721404
  370. Tischner, U., & Hora, M. (2012). “Sustainable electronic product design.” In Waste Electrical and Electronic Equipment (WEEE) Handbook (pp. 405–441). Elsevier. doi:10.1533/9780857096333.4.405
  371. Jiang, P., Harney, M., Song, Y., Chen, B., Chen, Q., Chen, T., Lazarus, G., et al. (2012). “Improving the End-of-Life for Electronic Materials via Sustainable Recycling Methods.” Procedia Environmental Sciences, 16, 485–490. doi:10.1016/j.proenv.2012.10.066
  372. Reardon, S. (2012). “Will we ever be able to buy a fair-trade smartphone?” New Scientist, 214(2860), 18. doi:10.1016/S0262-4079(12)60950-6
  373. Tomlinson, B., Silberman, M. S., Patterson, D., Pan, Y., & Blevis, E. (2012). “Collapse informatics: augmenting the sustainability & ICT4D discourse in HCI.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 655–664). Austin Texas USA: ACM. doi:10.1145/2207676.2207770
  374. Pierce, J. (2012). “Undesigning technology: considering the negation of design by design.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 957–966). Austin Texas USA: ACM. doi:10.1145/2207676.2208540
  375. Humar, I., Ge, X., Xiang, L., Jo, M., Chen, M., & Zhang, J. (2011). Rethinking energy efficiency models of cellular networks with embodied energy. IEEE Network, 25(2), 40–49. doi:10.1109/MNET.2011.5730527
  376. Williams, E. (2011). Environmental effects of information and communications technologies. Nature, 479(7373), 354–358. doi:10.1038/nature10682
  377. Yung, W. K. C., Chan, H. K., So, J. H. T., Wong, D. W. C., Choi, A. C. K., & Yue, T. M. (2011). “A life-cycle assessment for eco-redesign of a consumer electronic product.” Journal of Engineering Design, 22(2), 69–85. doi:10.1080/09544820902916597
  378. Koomey, J., Berard, S., Sanchez, M., & Wong, H. (2011). “Implications of Historical Trends in the Electrical Efficiency of Computing.” IEEE Annals of the History of Computing, 33(3), 46–54. doi:10.1109/MAHC.2010.28
  379. Amsel, N., Ibrahim, Z., Malik, A., & Tomlinson, B. (2011). “Toward sustainable software engineering (NIER track).” In Proceedings of the 33rd International Conference on Software Engineering (pp. 976–979). Waikiki, Honolulu HI USA: ACM. doi:10.1145/1985793.1985964
  380. Krumdieck, S. (2011). “The Survival Spectrum: The Key to Transition Engineering of Complex Systems.” In Volume 4: Energy Systems Analysis, Thermodynamics and Sustainability; Combustion Science and Engineering; Nanoengineering for Energy, Parts A and B (pp. 401–411). Denver, Colorado, USA: ASMEDC. doi:10.1115/IMECE2011-65891
  381. Ross, J., & Tomlinson, B. (2011, March). “Negabehaviors and Environmental Sustainability.” Journal of Sustainability Education. Retrieved from http://www.susted.com/wordpress/content/negabehaviors-and-environmental-sustainability_2011_03/
  382. Baumer, E. P. S., & Silberman, M. S. (2011). “When the implication is not to design (technology).” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 2271–2274). Vancouver BC Canada: ACM. doi:10.1145/1978942.1979275
  383. Harrison, G. P., Maclean, E. (N. J., Karamanlis, S., & Ochoa, L. F. (2010). “Life cycle assessment of the transmission network in Great Britain.” Energy Policy, 38(7), 3622–3631. doi:10.1016/j.enpol.2010.02.039
  384. Frazzoli, C., Orisakwe, O. E., Dragone, R., & Mantovani, A. (2010). “Diagnostic health risk assessment of electronic waste on the general population in developing countries’ scenarios.” Environmental Impact Assessment Review, 30(6), 388–399. doi:10.1016/j.eiar.2009.12.004
  385. Andrae, A. S. G., & Andersen, O. (2010). “Life cycle assessments of consumer electronics — are they consistent?” The International Journal of Life Cycle Assessment, 15(8), 827–836. doi:10.1007/s11367-010-0206-1
  386. Amsel, N., & Tomlinson, B. (2010). “Green tracker: a tool for estimating the energy consumption of software.” In CHI ’10 Extended Abstracts on Human Factors in Computing Systems (pp. 3337–3342). Atlanta Georgia USA: ACM. doi:10.1145/1753846.1753981
  387. Silva, N. D., Jawahir, I. S., Jr., O. D., & Russell, M. (2009). “A new comprehensive methodology for the evaluation of product sustainability at the design and development stage of consumer electronic products.” International Journal of Sustainable Manufacturing, 1(3), 251. doi:10.1504/IJSM.2009.023973
  388. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E., Lenton, T. M., et al. (2009). “Planetary Boundaries: Exploring the Safe Operating Space for Humanity.” Ecology and Society, 14(2). Retrieved from https://www.jstor.org/stable/26268316
  389. Krishnan, N., Boyd, S., Somani, A., Raoux, S., Clark, D., & Dornfeld, D. (2008). A hybrid life cycle inventory of nano-scale semiconductor manufacturing. Environmental Science and Technology, 42(8), 3069–3075. doi:10.1021/es071174k
  390. Tainter, J. A. (2008). “Collapse, Sustainability, and the Environment: How Authors Choose to Fail or Succeed.” Reviews in Anthropology, 37(4), 342–371. doi:10.1080/00938150802398677
  391. Oliver, J. Y., Poly, C., Luis, S., Geyer, R., Chong, F. T., & Barbara, S. (2007). Computing : Reusing Silicon Technology, 58–63.
  392. Le Pochat, S., Bertoluci, G., & Froelich, D. (2007). Integrating ecodesign by conducting changes in SMEs. Journal of Cleaner Production, 15(7), 671–680. doi:10.1016/j.jclepro.2006.01.004
  393. Yi, L., & Thomas, H. R. (2007). “A review of research on the environmental impact of e-business and ICT.” Environment International, 33(6), 841–849. doi:10.1016/j.envint.2007.03.015
  394. Barroso, L. A., & Hölzle, U. (2007). The Case for Energy-Proportional Computing. Computer, 40(12), 33–37. doi:10.1109/MC.2007.443
  395. Zhao, G., Xu, Y., Han, G., & Ling, B. (2006). Biotransfer of persistent organic pollutants from a large site in China used for the disassembly of electronic and electrical waste. Environmental Geochemistry and Health, 28(4), 341–351. doi:10.1007/s10653-005-9003-3
  396. Hilty, L. M., Arnfalk, P., Erdmann, L., Goodman, J., Lehmann, M., & Wäger, P. A. (2006). “The relevance of information and communication technologies for environmental sustainability – A prospective simulation study.” Environmental Modelling & Software, 21(11), 1618–1629. doi:10.1016/j.envsoft.2006.05.007
  397. Tainter, J. A. (2006). “Social complexity and sustainability.” Ecological Complexity, 3(2), 91–103. doi:10.1016/j.ecocom.2005.07.004
  398. Hischier, R., Wäger, P., & Gauglhofer, J. (2005). “Does WEEE recycling make sense from an environmental perspective?” Environmental Impact Assessment Review, 25(5), 525–539. doi:10.1016/j.eiar.2005.04.003
  399. Sinha-Khetriwal, D., Kraeuchi, P., & Schwaninger, M. (2005). “A comparison of electronic waste recycling in Switzerland and in India.” Environmental Impact Assessment Review, 25(5), 492–504. doi:10.1016/j.eiar.2005.04.006
  400. Williams, E. (2004). Energy intensity of computer manufacturing: Hybrid assessment combining process and economic input - Output methods. Environmental Science and Technology, 38(22), 6166–6174. doi:10.1021/es035152j
  401. Mueller, J., Griese, H., Schischke, K., Stobbe, I., Norris, G. A., & Udo de Haes, A. (2004). “Life cycle thinking for green electronics: basics in ecodesign and the UNEP/SETAC life cycle initiative.” In Proceedings of 2004 International IEEE Conference on the Asian Green Electronics (AGEC) (pp. 193–199). Hong Kong, China & Shenzhen, China: IEEE. doi:10.1109/AGEC.2004.1290903
  402. Köhler, A., & Erdmann, L. (2004). “Expected Environmental Impacts of Pervasive Computing.” Human and Ecological Risk Assessment: An International Journal, 10(5), 831–852. doi:10.1080/10807030490513856
  403. Griese, H., Schischke, K., Reichl, H., & Stobbe, L. (2004). “Sustainable development of microelectronic technology processes integration of ecodesign.” In Proceedings of the Sixth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (HDP ’04) (pp. 154–159). Shanghai, China: IEEE. doi:10.1109/HPD.2004.1346690
  404. Murphy, C. F., Kenig, G. A., Allen, D. T., Laurent, J. P., & Dyer, D. E. (2003). Development of Parametric Material, Energy, and Emission Inventories for Wafer Fabrication in the Semiconductor Industry. Environmental Science and Technology, 37(23), 5373–5382. doi:10.1021/es034434g
  405. Schischke, K., & Griese, H. (2003). “Is small green? Life cycle aspects of technology trends in microelectronics and microsystems.” Advanced Packaging. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.546.2898&rep=rep1&type=pdf
  406. Tainter, J. (2003). “A Framework for Sustainability.” World Futures, 59(3-4), 213–223. doi:10.1080/02604020310132
  407. Bhander, G. S., Hauschild, M., & McAloone, T. (2003). “Implementing life cycle assessment in product development: Implementing Life Cycle Assessment in Product Development.” Environmental Progress, 22(4), 255–267. doi:10.1002/ep.670220414
  408. Plepys, A. (2002). The grey side of ICT. Environmental Impact Assessment Review, 22(5), 509–523. doi:10.1016/S0195-9255(02)00025-2
  409. Chen, C. (2001). “Design for the Environment: A Quality-Based Model for Green Product Development.” Management Science, 47(2), 250–263. doi:10.1287/mnsc.47.2.250.9841
  410. Schischke, K., Stutz, M., Ruelle, J.-P., Griese, H., & Reichl, H. (2001). “Life cycle inventory analysis and identification of environmentally significant aspects in semiconductor manufacturing.” In Proceedings of the 2001 IEEE International Symposium on Electronics and the Environment. 2001 IEEE ISEE (Cat. No.01CH37190) (pp. 145–150). Denver, CO, USA: IEEE. doi:10.1109/ISEE.2001.924517
  411. Brundtland, G. H. (1987). “Our Common Future—Call for Action.” Environmental Conservation, 14(4), 291–294. doi:10.1017/S0376892900016805
  412. “How the AI industry profits from catastrophe”MIT Technology Review. Retrieved from

Last modified: 2022-09-14 11:21:57 +0200

  1. Yes, I am aware of the EU Waste from Electrical and Electronic Equipment (WEEE) Directive. As of 2021, 80% of WEEEs remain untreated globally. 

  2. I am a member of the Technical Committee of QA&Test, so this was an “internal” keynote. 

  3. I became a co-organiser of the 2021 edition of the SICT summer school. 

  4. Here is a BibTeX file for you: sustainable-ict.bib