A brief introduction to what (un-)sustainability could be in the context of ICT infrastructures, followed by a list of selected reading materials on the many aspects of sustainability in computing. I have good intentions to keep this updated.

Sustainable … what?

Your circular-economy electronics store around the corner. When do we get there?
Your circular-economy electronics store around the corner. When do we get there?

We’ve all been there: after 10 years of operation with pretty much no hiccups, your phone breaks and you think it’s finally time for a new device, not another repair. You walk through that busy shopping street (this story is set either before or after the COVID-19 apocalypse), passing by display windows with sustainable clothing and organic produce, till you reach the circular-economy electronics store. And now what? Too much of a choice. Do you take the elegant wooden design or do you go for steel? Luckily you don’t have to worry too much about the technical specs as they are all upgradable and fully modular devices. Neither do they weigh heavily on your consciousness – all those phones are produced from fairly mined and fairly traded materials, 99% recyclable, and they come with service contracts for free repairs and and software updates to guarantee an almost infinite lifespan.

Doesn’t sound familiar? Well, that’s the point. Why is it that sustainable products across many sectors are readily available, and producers and stores are happy to advertise these products as “sustainable”, “green”, “fair”, whatever, while in the ICT world the average consumer hardly thinks about these product qualities? What does it mean for a computer or a digital service to be sustainable anyway? Are there labels for sustainable ICT, or maybe something like the EC regulation on organic production and labelling of organic products, but for phones, printers and laptops that do not harm people and planet? And why are technology conferences full of talks that do not discuss the social and environmental impact of technology, or how to reduce these impacts?

What we vaguely understand is that the electronics sector has a huge footprint in terms of materials and energy consumption, causing environmental destruction and human exploitation in the production, use, and disposal of devices and services. In the context of sustainability, we also have to consider inequality and discrimination that is created or being promoted by the use of technology. And we know that these problems are expected to grow, proportionally to the growth of the ICT sector. Fortunately, there are also positive stories – the Fairphone and some other products, for example, ranked pretty high in the 2017 Greenpeace Guide to Greener Electronics, and a 2020 episode of Eco Africa - The Environment Magazine mentions positive developments in tackling e-waste.

Overall, I am convinced that consumers and engineers still need to learn a lot about sustainability aspects of electronics products. But the one question that all domains of our economy have to address, rather sooner than later, is that of defining the technologies which will bring us forward as a society, and which are worth the investment of scarce resources within the limits of the planetary boundaries, beyond the paradigm of generating profits and perpetual growth. Or, as Jason Hickel puts it:

How I got there

Speaking on Sustainable ICT at QA&Test, October 2019 in Bilbao.
Speaking on Sustainable ICT at QA&Test, October 2019 in Bilbao.

In late 2019 I was asked by the QA&Test1 conferences to give a keynote on this topic. Apparently I’ve been ranting enough about the devastation we cause with technology deployment, and people wanted to know what it is all about. I got scared and intrigued at once. I never heard a talk to outline the dirty downside of ICT at an ICT conference, and now I was to be the one to give such a talk. Out came a one-hour presentation with the title “Defining Environmental Sustainability in ICT”, which was followed by a long Q&A and many discussions with conference participants afterwards, over a beer, or at the breakfast table the next mornings. Apparently I had struck a responsive chord with some people, though we all couldn’t come up with easy answers about how to resolve this, at least not in the context of our current economy. But QA&Test followed up on the interest in the topic, and in 2020 we invited Tapani Jokinen to talk about sustainable design for electronics products.

I had heard about Tapani’s work before already, and finally followed one of his workshops at an extraordinary event in that pandemic summer of 2020: the first SICT: Summer School on Sustainable ICT2 at the University of Louvain-la-Neuve, Belgium. SICT was extraordinary in at least two aspects: it was the first time for me to meet a room full of people who all shared concerns about (different) sustainability aspects of the ICT, and it was the first real-life event I attended since the first wave of the pandemic in Europe. Personally I dubbed this iteration of SICT the “summer school on sustainable mining” – yes, I was hoping for more of a focus on software, services and security – but nevertheless it was eye-opening. A few days after that week of lectures, workshops and discussions, we started compiling a zotero library3 on sustainable ICT, to give people an entry point to this field of research. Below you find a selection of key publications from this bibliography, followed by the full list.

Please get in touch if you feel that something is missing. I do not claim that these resources are useful for everyone, or that they represent the the most influential works of sustainability research in ICT. Yet, it’s a collection of literature that helped me personally to find my way into this field, and I very much hope that it is useful for you.

Key Publications

Start Here

  • Cook, G., & Jardim, E. (2017). “Guide to Greener Electronics 2017.” Greenpeace. Retrieved from https://www.greenpeace.org/usa/reports/greener-electronics-2017/
    Why read it? The report gives a concise overview of the different facets of sustainability in the context of electronics products. A range of companies are ranked along a spectrum of criteria that you might not have thought of before.
  • Gossart, C. (2015). “Rebound effects and ICT : a review of the literature.” ICT innovations for sustainability, Advances in Intelligent Systems and Computing. Retrieved from https://doi.org/10.1007/978-3-319-09228-7_26
    Why read it? Across sectors and including ICT, we have witnessed important gains in materials and energy efficiency over the last years. Importantly, these gains did not lead to a global drop in resource usage or emissions, rather to the contrary, overall consumption is increasing. This paper discusses the “rebound effects” that lead to increased consumption when consumption becomes effectively cheaper.

Impact & Life-Cycle Assessment

  • Lange, S., Pohl, J., & Santarius, T. (2020). “Digitalization and energy consumption. Does ICT reduce energy demand?” Ecological Economics, 176, 106760. doi:10.1016/j.ecolecon.2020.106760
    Why read it? “These results can be explained by four insights from ecological economics: (a) physical capital and energy are complements in the ICT sector, (b) increases in energy efficiency lead to rebound effects, (c) ICT cannot solve the difficulty of decoupling economic growth from energy, (d) ICT services are relatively energy intensive and come on top of former production.”
  • Krumay, B., & Brandtweiner, R. (2016). “Measuring the environmental impact of ICT hardware.” International Journal of Sustainable Development and Planning, 11(6), 1064–1076. doi:10.2495/SDP-V11-N6-1064-1076
    Why read it? This work outlines various approaches to measure impacts of ICT hardware as well as their application in practice. The authors identify different indicators and brings these indicators to to the attention of experts from companies, to assess these approaches in terms of practicability, significance and value for practice.
  • Yi, L., & Thomas, H. R. (2007). “A review of research on the environmental impact of e-business and ICT.” Environment International, 33(6), 841–849. doi:10.1016/j.envint.2007.03.015
    Why read it? While already from 2007, this paper provides a comprehensive review of the state of the art of how e-business/ICT affects the environment. The paper explains why traditional assessment approaches are insufficient to accommodate the digital technology revolution and cannot accommodate the challenge of measuring the impacts of ICT on environmental sustainability.

Sustainable Materials for ICT

  • World Economic Forum. (2019). “A New Circular Vision for Electronics Time for a Global Reboot,” (January), 24–24. Retrieved from http://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf
    Why read it? “In the mining, manufacturing, transport, retail, consumption and disposal of electronics, there are vast amounts of wasted resources and the system has several negative impacts. Each year, approximately 50 million tonnes of electronic and electrical waste (e-waste) are produced, equivalent in weight to all commercial aircraft ever built; only 20% is formally recycled. If nothing is done, the amount of waste will more than double by 2050, to 120 million tonnes annually. […] There is also an opportunity to build a more circular electronics system, one in which resources are not extracted, used and wasted, but valued and re-used in ways that create decent, sustainable jobs.”
  • Friederich, P., Fediai, A., Kaiser, S., Konrad, M., Jung, N., & Wenzel, W. (2019). “Toward Design of Novel Materials for Organic Electronics.” Advanced Materials, 31(26), 1808256. doi:10.1002/adma.201808256
    Why read it? This article gives a bit of an outlook on the search for new organic materials to build electronic components. These materials have potential to be the basis of more sustainable ICT ecosystems. They are already used in applications, such as displays in mobile devices, and being intensely researched for other purposes, such as organic photovoltaics, large-area devices, and thin-film transistors.
  • Wäger, P. A., Hischier, R., & Widmer, R. (2015). “The Material Basis of ICT.” In L. M. Hilty & B. Aebischer (Eds.), ICT Innovations for Sustainability (Vol. 310, pp. 209–221). Cham: Springer International Publishing. doi:10.1007/978-3-319-09228-7_12
    Why read it? Storing and processing information will always need a material basis. This paper studies both the “upstream (from mining to the product) and the downstream (from the product to final disposal) implications of the composition of an average Swiss end-of-life (EoL) consumer ICT device from a materials perspective.”

Operational Impact of ICT

  • Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G., & Friday, A. (2021). “The climate impact of ICT: A review of estimates, trends and regulations.” arXiv:2102.02622 [physics]. Retrieved from http://arxiv.org/abs/2102.02622
    Why read it? A comprehensive and up-to-date survey of ICT’s current and projected climate impacts. “There are pronounced differences between available projections of ICT’s future emissions. These projections are dependent on underlying assumptions that are sometimes, but not always, made explicit - and we explore these in the report. Whatever assumptions analysts take, they agree that ICT will not reduce its emissions without a major concerted effort involving broad political and industrial action.”
  • Pärssinen, M., Kotila, M., Cuevas, R., Phansalkar, A., & Manner, J. (2018). “Environmental impact assessment of online advertising.” Environmental Impact Assessment Review, 73, 177–200. doi:10.1016/j.eiar.2018.08.004
    Why read it? “The online advertising ecosystem resides in the core of the Internet, and it is the sole source of funding for many online services. Therefore, it is an essential factor in the analysis of the Internet’s energy footprint. As a result, in 2016, online advertising consumed 20-282 TWh of energy. In the same year, the total infrastructure consumption ranged from 791 to 1334 TWh. With extrapolated 2016 input factor values without uncertainties, online advertising consumed 106 TWh of energy and the infrastructure 1059 TWh.”
  • Belkhir, L., & Elmeligi, A. (2018). “Assessing ICT global emissions footprint: Trends to 2040 & recommendations.” Journal of Cleaner Production, 177, 448–463. doi:10.1016/j.jclepro.2017.12.239
    Why read it? This is probably the most rigorous analysis to assess the global carbon footprint of the overall ICT industry, including the contribution from the main consumer devices, the data centres and communication networks. The paper makes predictions, suggesting that “if unchecked, ICT greenhouse gas emissions relative contribution could grow from roughly 1–1.6% in 2007 to exceed 14% of the 2016-level worldwide greenhouse gas emissions by 2040, accounting for more than half of the current relative contribution of the whole transportation sector.”

Sustainable Software

  • Lago, P., Verdecchia, R., Condori-Fernandez, N., Rahmadian, E., Sturm, J., van Nijnanten, T., Bosma, R., et al. (2021). “Designing for Sustainability: Lessons Learned from Four Industrial Projects.” In A. Kamilaris, V. Wohlgemuth, K. Karatzas, & I. N. Athanasiadis (Eds.), Advances and New Trends in Environmental Informatics (pp. 3–18). Cham: Springer International Publishing. doi:10.1007/978-3-030-61969-5_1
    Why read it? “We report the results of practitioners applying the Sustainability-Quality Assessment Framework (SAF) to four industrial cases. The results show that the SAF helps practitioners in (1) creating a sustainability mindset in their practices, (2) uncovering the relevant sustainability-quality concerns for the software project at hand, and (3) reasoning about the inter-dependencies and trade-offs of such concerns as well as the related short- and long-term implications. Next to improvements for the SAF, the main lesson for us as researchers is the missing explicit link between the SAF and the (technical) architecture design.”
  • Lago, P., Koçak, S. A., Crnkovic, I., & Penzenstadler, B. (2015). “Framing sustainability as a property of software quality.” Communications of the ACM, 58(10), 70–78. doi:10.1145/2714560
    Why read it? A short paper to assess the environmental dimension of software performance on two concrete examples. The assessment framework helps draw a more comprehensive picture of the relevant quality dimensions and, as a result, improve decision making.

Sustainable Security

  • Pavert, A., Völp, M., Brasser, F., Schunter, M., Asokan, N., Sadeghi, A.-R., Esteves-Veríssimo, P., et al. (2019). “Sustainable Security & Safety: Challenges and Opportunities.” 4th International Workshop on Security and Dependability of Critical Embedded Real-Time Systems (CERTS 2019). Retrieved from http://www.icri-cars.org/wp-content/uploads/2019/01/s3-vision.pdf
    Why read it? Keeping a device or a software secure over a long period of time – think of decades – is difficult, mostly because the techniques used in the product will be outdated and known to be vulnerable to malicious intruders rather soon. This paper outlines a path towards designing products that remain dependable for the future.

Crypto Currencies & Bitcoin

  • Jiang, S., Li, Y., Lu, Q., Hong, Y., Guan, D., Xiong, Y., & Wang, S. (2021). “Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China.” Nature Communications, 12(1), 1938. doi:10.1038/s41467-021-22256-3
    Why read it? “By investigating carbon emission flows of Bitcoin blockchain operation in China with a simulation-based Bitcoin blockchain carbon emission model, we find that without any policy interventions, the annual energy consumption of the Bitcoin blockchain in China is expected to peak in 2024 at 296.59 Twh and generate 130.50 million metric tons of carbon emission correspondingly.”
  • de Vries, A. (2021). “Bitcoin boom: What rising prices mean for the network’s energy consumption.” Joule, 5(3), 509–513. doi:10.1016/j.joule.2021.02.006
    Why read it? “These estimates reveal that the record-breaking surge in Bitcoin price at the start of 2021 could result in the network consuming as much energy as all data centers globally, with an associated carbon footprint matching London’s footprint size. Beyond these environmental impacts, the production of specialised mining devices might exacerbate the global shortage of chips, which could effect the ability to work from home, the economic recovery after the COVID-19 crisis, and the production of electric vehicles.The increasing popularity of mining in countries like Iran could even threaten international safety.”
  • Köhler, S., & Pizzol, M. (2019). “Life Cycle Assessment of Bitcoin Mining.” Environmental Science & Technology, 53(23), 13598–13606. doi:10.1021/acs.est.9b05687
    Why read it? “This study applied the well-established Life Cycle Assessment methodology to an in-depth analysis of drivers of past and future environmental impacts of the Bitcoin mining network. It was found that, in 2018, the Bitcoin network consumed 31.29 TWh with a carbon footprint of 17.29 MtCO2-eq, an estimate that is in the lower end of the range of results from previous studies. The main drivers of such impact were found to be the geographical distribution of miners and the efficiency of the mining equipment. In contrast to previous studies, it was found that the service life, production, and end-of-life of such equipment had only a minor contribution to the total impact, and that while the overall hashrate is expected to increase, the energy consumption and environmental footprint per TH mined is expected to decrease.”

Sustainability and Artificial Intelligence

  • Strubell, E., Ganesh, A., & McCallum, A. (2019). “Energy and Policy Considerations for Deep Learning in NLP.” arXiv:1906.02243 [cs]. Retrieved from http://arxiv.org/abs/1906.02243
    Why read it? This paper quantifies the approximate financial and environmental costs of training a variety of recently successful neural network models for natural language processing (NLP). The authors further propose actionable recommendations to reduce costs and improve equity in NLP research and practice.
  • Buolamwini, J., & Gebru, T. (2018). “Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification.” Proceedings of the 1st Conference on Fairness, Accountability and Transparency. Retrieved from http://proceedings.mlr.press/v81/buolamwini18a.html
    Why read it? A groundbreaking paper showing facial recognition to be inaccurate at identifying women and people of colour; the use of these technologies may therefore end up discriminating against certain groups of society.

Electronic Waste Management

  • Rosa, P., Sassanelli, C., & Terzi, S. (2019). “Circular Business Models versus circular benefits: An assessment in the waste from Electrical and Electronic Equipments sector.” Journal of Cleaner Production, 231, 940–952. doi:10.1016/j.jclepro.2019.05.310
    Why read it? This paper presents a very recent overview of Circular Business Models in electronics and comes with four use cases from the electronic waste sector, which demonstrate how to link business models with Circular Economy benefits.
  • Cucchiella, F., D’Adamo, I., Lenny Koh, S. C., & Rosa, P. (2015). “Recycling of WEEEs: An economic assessment of present and future e-waste streams.” Renewable and Sustainable Energy Reviews, 51, 263–272. doi:10.1016/j.rser.2015.06.010
    Why read it? “Waste from Electric and Electronic Equipments (WEEEs) is currently considered to be one of the fastest growing waste streams in the world, with an estimated growth rate going from 3% up to 5% per year. The recycling of Electric or electronic waste (E-waste) products could allow the diminishing use of virgin resources in manufacturing and, consequently, it could contribute in reducing the environmental pollution. […] A discussion of the economic assessment results shows the main challenges in the recycling sector and streamlines some concrete solutions.”

Full Bibliography

[Yes, this still needs to be cleaned up and checked for consistency. As I stated above, I’m committed to keep this post up to date.]

  1. Lago, P., Verdecchia, R., Condori-Fernandez, N., Rahmadian, E., Sturm, J., van Nijnanten, T., Bosma, R., et al. (2021). “Designing for Sustainability: Lessons Learned from Four Industrial Projects.” In A. Kamilaris, V. Wohlgemuth, K. Karatzas, & I. N. Athanasiadis (Eds.), Advances and New Trends in Environmental Informatics (pp. 3–18). Cham: Springer International Publishing. doi:10.1007/978-3-030-61969-5_1
  2. Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G., & Friday, A. (2021). “The climate impact of ICT: A review of estimates, trends and regulations.” arXiv:2102.02622 [physics]. Retrieved from http://arxiv.org/abs/2102.02622
  3. Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). “On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?” Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAccT2021). Retrieved from http://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf
  4. Obringer, R., Rachunok, B., Maia-Silva, D., Arbabzadeh, M., Nateghi, R., & Madani, K. (2021). “The overlooked environmental footprint of increasing Internet use.” Resources, Conservation and Recycling, 167, 105389. doi:10.1016/j.resconrec.2020.105389
  5. Groschupp, F., Schneider, M., Puddu, I., Shinde, S., & Capkun, S. (2021). “Sovereign Smartphone: To Enjoy Freedom We Have to Control Our Phones.” arXiv:2102.02743 [cs]. Retrieved from http://arxiv.org/abs/2102.02743
  6. de Vries, A. (2021). “Bitcoin boom: What rising prices mean for the network’s energy consumption.” Joule, 5(3), 509–513. doi:10.1016/j.joule.2021.02.006
  7. Jiang, S., Li, Y., Lu, Q., Hong, Y., Guan, D., Xiong, Y., & Wang, S. (2021). “Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China.” Nature Communications, 12(1), 1938. doi:10.1038/s41467-021-22256-3
  8. Khan, S. A. R., Yu, Z., Sarwat, S., Godil, D. I., Amin, S., & Shujaat, S. (2021). “The role of block chain technology in circular economy practices to improve organisational performance.” International Journal of Logistics Research and Applications, 0(0), 1–18. doi:10.1080/13675567.2021.1872512
  9. Greenwood, T. (2021). “Sustainable Web Design.” S.l.: A Book Apart. Retrieved from https://learning.oreilly.com/library/view/ /9781098128807/?ar?orpq&email=^u
  10. Bjørn, A., Lloyd, S., & Matthews, D. (2021). “From the Paris Agreement to corporate climate commitments: evaluation of seven methods for setting ‘science-based’ emission targets.” Environmental Research Letters, 16(5), 054019. doi:10.1088/1748-9326/abe57b
  11. Giesekam, J., Norman, J., Garvey, A., & Betts-Davies, S. (2021). “Science-Based Targets: On Target?” Sustainability, 13(4), 1657. doi:10.3390/su13041657
  12. Matus, K. J. M., & Veale, M. (2021). “Certification systems for machine learning: Lessons from sustainability.” Regulation & Governance, rego.12417. doi:10.1111/rego.12417
  13. Oswald, Y., Steinberger, J. K., Ivanova, D., & Millward-Hopkins, J. (2021). “Global redistribution of income and household energy footprints: a computational thought experiment.” Global Sustainability, 4, e4. doi:10.1017/sus.2021.1
  14. Crawford, K. (2021). Atlas of Ai: power, politics, and the planetary costs of artificial intelligence. New Haven: Yale University Press.
  15. Herrington, R. (2021). “Mining our green future.” Nature Reviews Materials, 6(6), 456–458. doi:10.1038/s41578-021-00325-9
  16. “Raw materials for a truly green future.” (2021).Nature Reviews Materials, 6(6), 455–455. doi:10.1038/s41578-021-00333-9
  17. Weidenkaff, A., Wagner-Wenz, R., & Veziridis, A. (2021). “A world without electronic waste.” Nature Reviews Materials, 6(6), 462–463. doi:10.1038/s41578-021-00330-y
  18. “Lithium-ion batteries need to be greener and more ethical.” (2021).Nature, 595(7865), 7–7. doi:10.1038/d41586-021-01735-z
  19. Vogel, J., Steinberger, J. K., O’Neill, D. W., Lamb, W. F., & Krishnakumar, J. (2021). “Socio-economic conditions for satisfying human needs at low energy use: An international analysis of social provisioning.” Global Environmental Change, 102287. doi:10.1016/j.gloenvcha.2021.102287
  20. Koomey, J., & Masanet, E. (2021). “Does not compute: Avoiding pitfalls assessing the Internet’s energy and carbon impacts.” Joule, S2542435121002117. doi:10.1016/j.joule.2021.05.007
  21. Cordella, M., Alfieri, F., & Sanfelix, J. (2020). “Guidance for the Assessment of Material Efficiency: Application to Smartphones.” doi:10.2760/037522
  22. Masanet, E., Shehabi, A., Lei, N., Smith, S., & Koomey, J. (2020). Recalibrating global data center energy-use estimates. Science, 367(6481), 984–986. doi:10.1126/science.aba3758
  23. Quisbert-Trujillo, E., Ernst, T., Samuel, K. E., Cor, E., & Monnier, E. (2020). “Lifecycle modeling for the eco design of the Internet of Things.” Procedia CIRP, 90, 97–101. doi:10.1016/j.procir.2020.02.120
  24. Hill, J., Widdicks, K., & Hazas, M. (2020). “Mapping the Scope of Software Interventions for Moderate Internet Use on Mobile Devices.” In Proceedings of the 7th International Conference on ICT for Sustainability (pp. 204–212). Bristol United Kingdom: ACM. doi:10.1145/3401335.3401361
  25. Burtscher, L., Barret, D., Borkar, A. P., Grinberg, V., Jahnke, K., Kendrew, S., Maffey, G., et al. (2020). “The carbon footprint of large astronomy meetings.” Nature Astronomy, 4(9), 823–825. doi:10.1038/s41550-020-1207-z
  26. Clément, L.-P. P.-V. P., Jacquemotte, Q. E. S., & Hilty, L. M. (2020). “Sources of variation in life cycle assessments of smartphones and tablet computers.” Environmental Impact Assessment Review, 84, 106416. doi:10.1016/j.eiar.2020.106416
  27. Mytton, D. (2020). “Hiding greenhouse gas emissions in the cloud.” Nature Climate Change, 10(8), 701–701. doi:10.1038/s41558-020-0837-6
  28. European Commission. Joint Research Centre. (2020). “Guidance for the assessment of material efficiency: application to smartphones.” LU: Publications Office. Retrieved from https://data.europa.eu/doi/10.2760/037522
  29. European Commission. Directorate General for Internal Market, Industry, Entrepreneurship and SMEs. (2020). “Critical raw materials for strategic technologies and sectors in the EU: a foresight study.” LU: Publications Office. Retrieved from https://data.europa.eu/doi/10.2873/58081
  30. Okrasinski, T. A., & Benowitz, M. S. (2020). Quantifying Environmental Life Cycle Impacts for ICT Products-A Simpler Approach. 2020 Pan Pacific Microelectronics Symposium, Pan Pacific 2020, 1–4. doi:10.23919/PanPacific48324.2020.9059483
  31. Horizon, E. N., & Programme, W. (2020). Building a low-carbon, climate resilient future: Green Deal call.
  32. Lange, S., Pohl, J., & Santarius, T. (2020). “Digitalization and energy consumption. Does ICT reduce energy demand?” Ecological Economics, 176, 106760. doi:10.1016/j.ecolecon.2020.106760
  33. Tan, Q., Liu, L., Yu, M., & Li, J. (2020). “An innovative method of recycling metals in printed circuit board (PCB) using solutions from PCB production.” Journal of Hazardous Materials, 390, 121892. doi:10.1016/j.jhazmat.2019.121892
  34. Sun, M., & Zhang, J. (2020). “Research on the application of block chain big data platform in the construction of new smart city for low carbon emission and green environment.” Computer Communications, 149, 332–342. doi:10.1016/j.comcom.2019.10.031
  35. Gallersdörfer, U., Klaaßen, L., & Stoll, C. (2020). “Energy Consumption of Cryptocurrencies Beyond Bitcoin.” Joule, 4(9), 1843–1846. doi:10.1016/j.joule.2020.07.013
  36. Clarke-Sather, A. R., Mamun, S., Nolan, D., Schoff, P., Aro, M., & Ulrich, B. (2020). “Towards Prospective Sustainability Life Cycle Assessment.” In Volume 6: 25th Design for Manufacturing and the Life Cycle Conference (DFMLC) (p. V006T06A024). Virtual, Online: American Society of Mechanical Engineers. doi:10.1115/DETC2020-22526
  37. Hickel, J., & Kallis, G. (2020). “Is Green Growth Possible?” New Political Economy, 25(4), 469–486. doi:10.1080/13563467.2019.1598964
  38. Millward-Hopkins, J., Steinberger, J. K., Rao, N. D., & Oswald, Y. (2020). “Providing decent living with minimum energy: A global scenario.” Global Environmental Change, 65, 102168. doi:10.1016/j.gloenvcha.2020.102168
  39. JRC. (2019). EU GPP criteria for EU Green Public, (December).
  40. Ferreboeuf, H. (2019). “Lean ICT - towards digital sobriety (The Shift Project),” (March), 90–90. Retrieved from https://theshiftproject.org
  41. SAWB. (2019). LES VERROUS economiques DE LA TRANSITION.
  42. Fonseca, A., Kazman, R., & Lago, P. (2019). “A Manifesto for Energy-Aware Software.” IEEE Software, 36(6), 79–82. doi:10.1109/MS.2019.2924498
  43. Condori-Fernandez, N., & Lago, P. (2019). “Towards a Software Sustainability-Quality Model: Insights from a Multi-Case Study.” In 2019 13th International Conference on Research Challenges in Information Science (RCIS) (pp. 1–11). Brussels, Belgium: IEEE. doi:10.1109/RCIS.2019.8877084
  44. Wangel, J., Hesselgren, M., Eriksson, E., Broms, L., Kanulf, G., & Ljunggren, A. (2019). “Vitiden: Transforming a policy-orienting scenario to a practice-oriented energy fiction.” Futures, 112, 102440. doi:10.1016/j.futures.2019.102440
  45. Hedin, B., Katzeff, C., Eriksson, E., & Pargman, D. (2019). “A Systematic Review of Digital Behaviour Change Interventions for More Sustainable Food Consumption.” Sustainability, 11(9), 2638. doi:10.3390/su11092638
  46. Widdicks, K., Hazas, M., Bates, O., & Friday, A. (2019). “Streaming, Multi-Screens and YouTube: The New (Unsustainable) Ways of Watching in the Home.” In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–13). Glasgow Scotland Uk: ACM. doi:10.1145/3290605.3300696
  47. Bringezu, S. (2019). “Toward Science-Based and Knowledge-Based Targets for Global Sustainable Resource Use.” Resources, 8(3), 140. doi:10.3390/resources8030140
  48. Lacoste, A., Luccioni, A., Schmidt, V., & Dandres, T. (2019). “Quantifying the Carbon Emissions of Machine Learning.” arXiv:1910.09700 [cs]. Retrieved from http://arxiv.org/abs/1910.09700
  49. Strubell, E., Ganesh, A., & McCallum, A. (2019). “Energy and Policy Considerations for Deep Learning in NLP.” arXiv:1906.02243 [cs]. Retrieved from http://arxiv.org/abs/1906.02243
  50. Zuloaga, F., Schweitzer, J.-P., Anastasio, M., & Arditi, S. (2019). “Coolproducts don’t cost the Earth – Report.” European Environmental Bureau. Retrieved from https://mk0eeborgicuypctuf7e.kinstacdn.com/wp-content/uploads/2019/09/Coolproducts-report.pdf
  51. World Economic Forum. (2019). “A New Circular Vision for Electronics Time for a Global Reboot,” (January), 24–24. Retrieved from http://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf
  52. Rosa, P., Sassanelli, C., & Terzi, S. (2019). “Circular Business Models versus circular benefits: An assessment in the waste from Electrical and Electronic Equipments sector.” Journal of Cleaner Production, 231, 940–952. doi:10.1016/j.jclepro.2019.05.310
  53. Fiore, S., Ibanescu, D., Teodosiu, C., & Ronco, A. (2019). “Improving waste electric and electronic equipment management at full-scale by using material flow analysis and life cycle assessment.” Science of The Total Environment, 659, 928–939. doi:10.1016/j.scitotenv.2018.12.417
  54. Friederich, P., Fediai, A., Kaiser, S., Konrad, M., Jung, N., & Wenzel, W. (2019). “Toward Design of Novel Materials for Organic Electronics.” Advanced Materials, 31(26), 1808256. doi:10.1002/adma.201808256
  55. Lu, X., Miki, T., Takeda, O., Zhu, H., & Nagasaka, T. (2019). Thermodynamic criteria of the end-of-life silicon wafers refining for closing the recycling loop of photovoltaic panels. Science and Technology of Advanced Materials, 20(1), 813–825. doi:10.1080/14686996.2019.1641429
  56. De Meester, S., Nachtergaele, P., Debaveye, S., Vos, P., & Dewulf, J. (2019). Using material flow analysis and life cycle assessment in decision support: A case study on WEEE valorization in Belgium. Resources, Conservation and Recycling, 142(July 2018), 1–9. doi:10.1016/j.resconrec.2018.10.015
  57. Pavert, A., Völp, M., Brasser, F., Schunter, M., Asokan, N., Sadeghi, A.-R., Esteves-Veríssimo, P., et al. (2019). “Sustainable Security & Safety: Challenges and Opportunities.” 4th International Workshop on Security and Dependability of Critical Embedded Real-Time Systems (CERTS 2019). Retrieved from http://www.icri-cars.org/wp-content/uploads/2019/01/s3-vision.pdf
  58. Hazas, M., & Nathan, L. (2019). “Digital Technology and Sustainability: Engaging the Paradox.” Routledge Studies in Sustainability (1st ed.). Routledge. Retrieved from https://www.routledge.com/Digital-Technology-and-Sustainability-Engaging-the-Paradox/Hazas-Nathan/p/book/9780367271169
  59. Köhler, S., & Pizzol, M. (2019). “Life Cycle Assessment of Bitcoin Mining.” Environmental Science & Technology, 53(23), 13598–13606. doi:10.1021/acs.est.9b05687
  60. Hickel, J. (2019). “The contradiction of the sustainable development goals: Growth versus ecology on a finite planet.” Sustainable Development, 27(5), 873–884. doi:10.1002/sd.1947
  61. Masanet, E., Shehabi, A., Lei, N., Vranken, H., Koomey, J., & Malmodin, J. (2019). “Implausible projections overestimate near-term Bitcoin CO2 emissions.” Nature Climate Change, 9(9), 653–654. doi:10.1038/s41558-019-0535-4
  62. Mora, C., Rollins, R. L., Taladay, K., Kantar, M. B., Chock, M. K., Shimada, M., & Franklin, E. C. (2019). “Mora et al. reply.” Nature Climate Change, 9(9), 658–659. doi:10.1038/s41558-019-0538-1
  63. Kline, D., Parshook, N., Johnson, A., Stine, J. E., Stanchina, W., Brunvand, E., & Jones, A. K. (2018). Sustainable IC design and fabrication. 2017 8th International Green and Sustainable Computing Conference, IGSC 2017, 2017-Octob, 1–8. doi:10.1109/IGCC.2017.8323572
  64. Nardi, B., Tomlinson, B., Patterson, D. J., Chen, J., Pargman, D., Raghavan, B., & Penzenstadler, B. (2018). Computing within limits. Communications of the ACM, 61(10), 86–93. doi:10.1145/3183582
  65. EFLA, Kjeld, A., Ingólfsdóttir, G. M., Bjarnadóttir, H. J., & Jónsson, R. (2018). “Life Cycle Assessment for Transmission Towers.” Retrieved from https://www.statnett.no/contentassets/1aa0ae3324714e939efc762f029b0691/life-cycle-assessment-for-transmission-towers—a-comparative-study-of-three-tower-types.pdf
  66. Morley, J., Widdicks, K., & Hazas, M. (2018). “Digitalisation, energy and data demand: The impact of Internet traffic on overall and peak electricity consumption.” Energy Research & Social Science, 38, 128–137. doi:10.1016/j.erss.2018.01.018
  67. Venters, C. C., Capilla, R., Betz, S., Penzenstadler, B., Crick, T., Crouch, S., Nakagawa, E. Y., et al. (2018). “Software sustainability: Research and practice from a software architecture viewpoint.” Journal of Systems and Software, 138, 174–188. doi:10.1016/j.jss.2017.12.026
  68. Condori-Fernandez, N., & Lago, P. (2018). “Characterizing the contribution of quality requirements to software sustainability.” Journal of Systems and Software, 137, 289–305. doi:10.1016/j.jss.2017.12.005
  69. Malmodin, J., & Lundén, D. (2018). “The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015.” Sustainability, 10(9), 3027. doi:10.3390/su10093027
  70. Buolamwini, J., & Gebru, T. (2018). “Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification.” Proceedings of the 1st Conference on Fairness, Accountability and Transparency. Retrieved from http://proceedings.mlr.press/v81/buolamwini18a.html
  71. Pärssinen, M., Kotila, M., Cuevas, R., Phansalkar, A., & Manner, J. (2018). “Environmental impact assessment of online advertising.” Environmental Impact Assessment Review, 73, 177–200. doi:10.1016/j.eiar.2018.08.004
  72. Waste electrical and electronic equipment (weee) handbook. (2018). Place of publication not identified: WOODHEAD.
  73. Dong, Y., Bao, C., & Kim, W. S. (2018). “Sustainable Additive Manufacturing of Printed Circuit Boards.” Joule, 2(4), 579–582. doi:10.1016/j.joule.2018.03.015
  74. Belkhir, L., & Elmeligi, A. (2018). “Assessing ICT global emissions footprint: Trends to 2040 & recommendations.” Journal of Cleaner Production, 177, 448–463. doi:10.1016/j.jclepro.2017.12.239
  75. Jones, N. (2018). “How to stop data centres from gobbling up the world’s electricity.” Nature, 561(7722), 163–166. doi:10.1038/d41586-018-06610-y
  76. de Vries, A. (2018). “Bitcoin’s Growing Energy Problem.” Joule, 2(5), 801–805. doi:10.1016/j.joule.2018.04.016
  77. Haffar, M., & Searcy, C. (2018). “Target-setting for ecological resilience: Are companies setting environmental sustainability targets in line with planetary thresholds?” Business Strategy and the Environment, 27(7), 1079–1092. doi:10.1002/bse.2053
  78. Aslan, J., Mayers, K., Koomey, J. G., & France, C. (2018). “Electricity Intensity of Internet Data Transmission: Untangling the Estimates: Electricity Intensity of Data Transmission.” Journal of Industrial Ecology, 22(4), 785–798. doi:10.1111/jiec.12630
  79. Mora, C., Rollins, R. L., Taladay, K., Kantar, M. B., Chock, M. K., Shimada, M., & Franklin, E. C. (2018). “Bitcoin emissions alone could push global warming above 2°C.” Nature Climate Change, 8(11), 931–933. doi:10.1038/s41558-018-0321-8
  80. The Global E-waste Monitor 2017. (2017).
  81. Wall, F., Rollat, A., & Pell, R. S. (2017). Responsible sourcing of critical metals. Elements, 13(5), 313–318. doi:10.2138/gselements.13.5.313
  82. Jang, E., Johnson, M., Burnell, E., & Heimerl, K. (2017). Unplanned obsolescence: Hardware and software after collapse. LIMITS 2017 - Proceedings of the 2017 Workshop on Computing Within Limits, 93–101. doi:10.1145/3080556.3080566
  83. Rousseaux, P., Gremy-Gros, C., Bonnin, M., Henriel-Ricordel, C., Bernard, P., Floury, L., Staigre, G., et al. (2017). “Eco-tool-seeker”A new and unique business guide for choosing ecodesign tools. Journal of Cleaner Production, 151, 546–577. doi:10.1016/j.jclepro.2017.03.089
  84. Kline, D., Parshook, N., Ge, X., Brunvand, E., Melhem, R., Chrysanthis, P. K., & Jones, A. K. (2017). Holistically evaluating the environmental impacts in modern computing systems. 2016 7th International Green and Sustainable Computing Conference, IGSC 2016, (Section III), 1–8. doi:10.1109/IGCC.2016.7892605
  85. A. Chagnes, G. C., ... T. Retegan. (2017). WEEE Recycling Research, Development, and Policies.
  86. Wolfram, N., Lago, P., & Osborne, F. (2017). “Sustainability in software engineering.” In 2017 Sustainable Internet and ICT for Sustainability (SustainIT) (pp. 1–7). Funchal: IEEE. doi:10.23919/SustainIT.2017.8379798
  87. Calero, C., & Piattini, M. (2017). “Puzzling out Software Sustainability.” Sustainable Computing: Informatics and Systems, 16, 117–124. doi:10.1016/j.suscom.2017.10.011
  88. European Commission. Joint Research Centre. (2017). “Critical raw materials and the circular economy: background report.” LU: Publications Office. Retrieved from https://data.europa.eu/doi/10.2760/378123
  89. Arshad, R., Zahoor, S., Shah, M. A., Wahid, A., & Yu, H. (2017). “Green IoT: An Investigation on Energy Saving Practices for 2020 and Beyond.” IEEE Access, 5, 15667–15681. doi:10.1109/ACCESS.2017.2686092
  90. Cooper, D. R., & Gutowski, T. G. (2017). “The Environmental Impacts of Reuse: A Review: The Environmental Impacts of Reuse: A Review.” Journal of Industrial Ecology, 21(1), 38–56. doi:10.1111/jiec.12388
  91. Zink, T., & Geyer, R. (2017). “Circular Economy Rebound: Circular Economy Rebound.” Journal of Industrial Ecology, 21(3), 593–602. doi:10.1111/jiec.12545
  92. Cook, G., & Jardim, E. (2017). “Guide to Greener Electronics 2017.” Greenpeace. Retrieved from https://www.greenpeace.org/usa/reports/greener-electronics-2017/
  93. Weng, Z., Haque, N., Mudd, G. M., & Jowitt, S. M. (2016). “Assessing the energy requirements and global warming potential of the production of rare earth elements.” Journal of Cleaner Production, 139, 1282–1297. doi:10.1016/j.jclepro.2016.08.132
  94. Andrae, B. A. S. G. (2016). Life-Cycle Assessment of Consumer Electronics. IEEE Consumer Electronics Magazine Volume:5 , Issue: 1, (January), 51–60. doi:10.1109/MCE.2015.2484639
  95. Stahel, W. R. (2016). “The circular economy.” Nature, 531(7595), 435–438. doi:10.1038/531435a
  96. Ercan, M., Malmodin, J., Bergmark, P., Kimfalk, E., & Nilsson, E. (2016). “Life Cycle Assessment of a Smartphone.” In Proceedings of ICT for Sustainability 2016. Amsterdam, the Netherlands: Atlantis Press. doi:10.2991/ict4s-16.2016.15
  97. Poggiali, J. (2016). “Incorporating Ethical Consumption into Electronic Device Acquisition: A Proposal.” portal: Libraries and the Academy, 16(3), 581–597. doi:10.1353/pla.2016.0037
  98. Krumay, B., & Brandtweiner, R. (2016). “Measuring the environmental impact of ICT hardware.” International Journal of Sustainable Development and Planning, 11(6), 1064–1076. doi:10.2495/SDP-V11-N6-1064-1076
  99. Villard, A., Lelah, A., & Brissaud, D. (2015). Drawing a chip environmental profile: Environmental indicators for the semiconductor industry. Journal of Cleaner Production, 86, 98–109. doi:10.1016/j.jclepro.2014.08.061
  100. Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P., Reck, B. K., & Turner, B. L. (2015). Criticality of metals and metalloids. Proceedings of the National Academy of Sciences of the United States of America, 112(14), 4257–4262. doi:10.1073/pnas.1500415112
  101. Regenfelder, M., Schischke, K., Ebelt, S., & Slowak, A. P. (2015). Achieving ‘ Sustainable Smart Mobile Devices Lifecycles Through Advanced Re-design , Reliability , and Re-use and Remanufacturing Technology ,’ 1–9.
  102. Hilty, L., & Aebischer, B. (2015). Recycling of ICT Equipment in Industrialized and Developing Countries. Advances in intelligent systems and computing, 310, 223–241. doi:10.1007/978-3-319-09228-7
  103. Hilty, L., & Aebischer, B. (2015). “ICT Innovations for Sustainability.” Advances in Intelligent Systems and Computing (Vol. 310). Springer International Publishing. Retrieved from https://www.springer.com/gp/book/9783319092270
  104. Lago, P. (2015). “Challenges and Opportunities for Sustainable Software.” In 2015 IEEE/ACM 5th International Workshop on Product Line Approaches in Software Engineering (pp. 1–2). Florence, Italy: IEEE. doi:10.1109/PLEASE.2015.8
  105. Lago, P., Koçak, S. A., Crnkovic, I., & Penzenstadler, B. (2015). “Framing sustainability as a property of software quality.” Communications of the ACM, 58(10), 70–78. doi:10.1145/2714560
  106. Aebischer, B., & Hilty, L. M. (2015). “The Energy Demand of ICT: A Historical Perspective and Current Methodological Challenges.” In L. M. Hilty & B. Aebischer (Eds.), ICT Innovations for Sustainability (Vol. 310, pp. 71–103). Cham: Springer International Publishing. doi:10.1007/978-3-319-09228-7_4
  107. Andrae, A., & Edler, T. (2015). “On Global Electricity Usage of Communication Technology: Trends to 2030.” Challenges, 6(1), 117–157. doi:10.3390/challe6010117
  108. Suckling, J., & Lee, J. (2015). “Redefining scope: the true environmental impact of smartphones?” The International Journal of Life Cycle Assessment, 20(8), 1181–1196. doi:10.1007/s11367-015-0909-4
  109. Sarath, P., Bonda, S., Mohanty, S., & Nayak, S. K. (2015). “Mobile phone waste management and recycling: Views and trends.” Waste Management, 46, 536–545. doi:10.1016/j.wasman.2015.09.013
  110. Cucchiella, F., D’Adamo, I., Lenny Koh, S. C., & Rosa, P. (2015). “Recycling of WEEEs: An economic assessment of present and future e-waste streams.” Renewable and Sustainable Energy Reviews, 51, 263–272. doi:10.1016/j.rser.2015.06.010
  111. Gui, J., Mcilroy, S., Nagappan, M., & Halfond, W. G. J. (2015). “Truth in Advertising: The Hidden Cost of Mobile Ads for Software Developers.” In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (pp. 100–110). Florence, Italy: IEEE. doi:10.1109/ICSE.2015.32
  112. Hong, J., Shi, W., Wang, Y., Chen, W., & Li, X. (2015). “Life cycle assessment of electronic waste treatment.” Waste Management, 38, 357–365. doi:10.1016/j.wasman.2014.12.022
  113. Umair, S., Björklund, A., & Petersen, E. E. (2015). “Social impact assessment of informal recycling of electronic ICT waste in Pakistan using UNEP SETAC guidelines.” Resources, Conservation and Recycling, 95, 46–57. doi:10.1016/j.resconrec.2014.11.008
  114. Wäger, P. A., Hischier, R., & Widmer, R. (2015). “The Material Basis of ICT.” In L. M. Hilty & B. Aebischer (Eds.), ICT Innovations for Sustainability (Vol. 310, pp. 209–221). Cham: Springer International Publishing. doi:10.1007/978-3-319-09228-7_12
  115. Gossart, C. (2015). “Rebound effects and ICT : a review of the literature.” ICT innovations for sustainability, Advances in Intelligent Systems and Computing. Retrieved from https://doi.org/10.1007/978-3-319-09228-7_26
  116. Krabbe, O., Linthorst, G., Blok, K., Crijns-Graus, W., van Vuuren, D. P., Höhne, N., Faria, P., et al. (2015). “Aligning corporate greenhouse-gas emissions targets with climate goals.” Nature Climate Change, 5(12), 1057–1060. doi:10.1038/nclimate2770
  117. Andrae, A., & Vaija, M. (2014). To Which Degree Does Sector Specific Standardization Make Life Cycle Assessments Comparable?—The Case of Global Warming Potential of Smartphones. Challenges, 5(2), 409–429. doi:10.3390/challe5020409
  118. Hilty, L. M., Aebischer, B., & Rizzoli, A. E. (2014). Modeling and evaluating the sustainability of smart solutions. Environmental Modelling and Software, 56, 1–5. doi:10.1016/j.envsoft.2014.04.001
  119. Baudry, I. (2014). Caractérisation des process de fabrication microélectroniques pour l ’ éco-conception des futures technologies ( partenaire industriel STMicroelectronics ) To cite this version : HAL Id : tel-00957329 Caractérisation environnementale des procédés de fabri.
  120. Malmodin, J., Lundén, D., Moberg, Å., Andersson, G., & Nilsson, M. (2014). “Life Cycle Assessment of ICT: Carbon Footprint and Operational Electricity Use from the Operator, National, and Subscriber Perspective in Sweden.” Journal of Industrial Ecology, 18(6), 829–845. doi:10.1111/jiec.12145
  121. Lago, P., Meyer, N., Morisio, M., Müller, H. A., & Scanniello, G. (2014). “Leveraging ‘energy efficiency to software users’: summary of the second GREENS workshop, at ICSE 2013.” ACM SIGSOFT Software Engineering Notes, 39(1), 36–38. doi:10.1145/2557833.2557859
  122. Zink, T., Maker, F., Geyer, R., Amirtharajah, R., & Akella, V. (2014). “Comparative life cycle assessment of smartphone reuse: repurposing vs. refurbishment.” The International Journal of Life Cycle Assessment, 19(5), 1099–1109. doi:10.1007/s11367-014-0720-7
  123. Arushanyan, Y., Ekener-Petersen, E., & Finnveden, G. (2014). “Lessons learned – Review of LCAs for ICT products and services.” Computers in Industry, 65(2), 211–234. doi:10.1016/j.compind.2013.10.003
  124. Rasmussen, K., Wilson, A., & Hindle, A. (2014). “Green mining: energy consumption of advertisement blocking methods.” In Proceedings of the 3rd International Workshop on Green and Sustainable Software - GREENS 2014 (pp. 38–45). Hyderabad, India: ACM Press. doi:10.1145/2593743.2593749
  125. Liu, J., Yang, C., Wu, H., Lin, Z., Zhang, Z., Wang, R., Li, B., et al. (2014). “Future paper based printed circuit boards for green electronics: fabrication and life cycle assessment.” Energy Environ. Sci., 7(11), 3674–3682. doi:10.1039/C4EE01995D
  126. Peiró, L. T., Méndez, G. V., & Ayres, R. U. (2013). Material flow analysis of scarce metals: Sources, functions, end-uses and aspects for future supply. Environmental Science and Technology, 47(6), 2939–2947. doi:10.1021/es301519c
  127. Boyd, S. (2013). Life-Cycle Assessment of Semiconductors (Vol. 53). doi:10.1017/CBO9781107415324.004
  128. Jones, A. K., Liao, L., Collinge, W. O., Xu, H., Schaefer, L. A., Landis, A. E., & Bilec, M. M. (2013). Green computing: A life cycle perspective. 2013 International Green Computing Conference Proceedings, IGCC 2013, 1–6. doi:10.1109/IGCC.2013.6604497
  129. Jones, A. K., Chen, Y., Collinge, W. O., Xu, H., Schaefer, L. A., Landis, A. E., & Bilec, M. M. (2013). Considering fabrication in sustainable computing. IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD, 206–210. doi:10.1109/ICCAD.2013.6691120
  130. G.EN.ESI Education Centre. (2013). Introduction to Eco-design. G.EN.ESI Education Centre, 1–3.
  131. Mike Ashby, D. F., Jennifer Bruce. (2013). “Materials and Sustainable Development - a White paper.” Granta Design, (May), 1–45. Retrieved from http://lewis.upc.es/ ricksellens/final/74/1-Papers-SustainableTechnology.pdf
  132. Bozzelli, P., Quing, G., & Lago, P. (2013). “A systematic literature review on green software metrics.” Retrieved from https://research.vu.nl/files/910331/SLR%20GreenMetrics.pdf
  133. Lago, P., Kazman, R., Meyer, N., Morisio, M., Müller, H. A., & Paulisch, F. (2013). “Exploring initial challenges for green software engineering: summary of the first GREENS workshop, at ICSE 2012.” ACM SIGSOFT Software Engineering Notes, 38(1), 31–33. doi:10.1145/2413038.2413062
  134. Bol, D., Vos, J. D., Streel, G. D., Bernard, S., Flandre, D., & Legat, J.-D. (2013). “Green SoCs for a Sustainable Internet-of-Things ( Invited paper ).” IEEE Faible Tension Faible Consommation. Retrieved from https://doi.org/10.1109/FTFC.2013.6577767
  135. Schischke, K., Nissen, N. F., Sherry, J., O’Rafferty, S., O’Connor, F., Sitek, J., Pamminger, R., et al. (2012). Life Cycle thinking in small and medium sized enterprises - Status quo and strategic needs in the electronics sector. Electronics Goes Green 2012+, ECG 2012 - Joint International Conference and Exhibition, Proceedings.
  136. ITU. (2012). “Toolkit on environmental sustainability for the ICT sector,” 314–314. Retrieved from http://www.itu.int/ITU-T/climatechange/ess/index.html
  137. Okrasinski, T., Malian, J., Arnold, J., Tsuriya, M., & Fu, H. (2012). Simplified Approach for Estimating Life Cycle Eco-Impact for Information and Communications Technology Products. Design for Innovative Value Towards a Sustainable Society, (1), 750–755. doi:10.1007/978-94-007-3010-6_152
  138. Røpke, I., & Christensen, T. H. (2012). “Energy impacts of ICT – Insights from an everyday life perspective.” Telematics and Informatics, 29(4), 348–361. doi:10.1016/j.tele.2012.02.001
  139. Kuczynski, J., & Boday, D. J. (2012). “Bio-based materials for high-end electronics applications.” International Journal of Sustainable Development & World Ecology, 19(6), 557–563. doi:10.1080/13504509.2012.721404
  140. Tischner, U., & Hora, M. (2012). “Sustainable electronic product design.” In Waste Electrical and Electronic Equipment (WEEE) Handbook (pp. 405–441). Elsevier. doi:10.1533/9780857096333.4.405
  141. Jiang, P., Harney, M., Song, Y., Chen, B., Chen, Q., Chen, T., Lazarus, G., et al. (2012). “Improving the End-of-Life for Electronic Materials via Sustainable Recycling Methods.” Procedia Environmental Sciences, 16, 485–490. doi:10.1016/j.proenv.2012.10.066
  142. Humar, I., Ge, X., Xiang, L., Jo, M., Chen, M., & Zhang, J. (2011). Rethinking energy efficiency models of cellular networks with embodied energy. IEEE Network, 25(2), 40–49. doi:10.1109/MNET.2011.5730527
  143. Williams, E. (2011). Environmental effects of information and communications technologies. Nature, 479(7373), 354–358. doi:10.1038/nature10682
  144. Yung, W. K. C., Chan, H. K., So, J. H. T., Wong, D. W. C., Choi, A. C. K., & Yue, T. M. (2011). “A life-cycle assessment for eco-redesign of a consumer electronic product.” Journal of Engineering Design, 22(2), 69–85. doi:10.1080/09544820902916597
  145. Koomey, J., Berard, S., Sanchez, M., & Wong, H. (2011). “Implications of Historical Trends in the Electrical Efficiency of Computing.” IEEE Annals of the History of Computing, 33(3), 46–54. doi:10.1109/MAHC.2010.28
  146. Harrison, G. P., Maclean, E. (N. J., Karamanlis, S., & Ochoa, L. F. (2010). “Life cycle assessment of the transmission network in Great Britain.” Energy Policy, 38(7), 3622–3631. doi:10.1016/j.enpol.2010.02.039
  147. Frazzoli, C., Orisakwe, O. E., Dragone, R., & Mantovani, A. (2010). “Diagnostic health risk assessment of electronic waste on the general population in developing countries’ scenarios.” Environmental Impact Assessment Review, 30(6), 388–399. doi:10.1016/j.eiar.2009.12.004
  148. Andrae, A. S. G., & Andersen, O. (2010). “Life cycle assessments of consumer electronics — are they consistent?” The International Journal of Life Cycle Assessment, 15(8), 827–836. doi:10.1007/s11367-010-0206-1
  149. Krishnan, N., Boyd, S., Somani, A., Raoux, S., Clark, D., & Dornfeld, D. (2008). A hybrid life cycle inventory of nano-scale semiconductor manufacturing. Environmental Science and Technology, 42(8), 3069–3075. doi:10.1021/es071174k
  150. Oliver, J. Y., Poly, C., Luis, S., Geyer, R., Chong, F. T., & Barbara, S. (2007). Computing : Reusing Silicon Technology, 58–63.
  151. Le Pochat, S., Bertoluci, G., & Froelich, D. (2007). Integrating ecodesign by conducting changes in SMEs. Journal of Cleaner Production, 15(7), 671–680. doi:10.1016/j.jclepro.2006.01.004
  152. Yi, L., & Thomas, H. R. (2007). “A review of research on the environmental impact of e-business and ICT.” Environment International, 33(6), 841–849. doi:10.1016/j.envint.2007.03.015
  153. Zhao, G., Xu, Y., Han, G., & Ling, B. (2006). Biotransfer of persistent organic pollutants from a large site in China used for the disassembly of electronic and electrical waste. Environmental Geochemistry and Health, 28(4), 341–351. doi:10.1007/s10653-005-9003-3
  154. Hischier, R., Wäger, P., & Gauglhofer, J. (2005). “Does WEEE recycling make sense from an environmental perspective?” Environmental Impact Assessment Review, 25(5), 525–539. doi:10.1016/j.eiar.2005.04.003
  155. Sinha-Khetriwal, D., Kraeuchi, P., & Schwaninger, M. (2005). “A comparison of electronic waste recycling in Switzerland and in India.” Environmental Impact Assessment Review, 25(5), 492–504. doi:10.1016/j.eiar.2005.04.006
  156. Williams, E. (2004). Energy intensity of computer manufacturing: Hybrid assessment combining process and economic input - Output methods. Environmental Science and Technology, 38(22), 6166–6174. doi:10.1021/es035152j
  157. Mueller, J., Griese, H., Schischke, K., Stobbe, I., Norris, G. A., & Udo de Haes, A. (2004). “Life cycle thinking for green electronics: basics in ecodesign and the UNEP/SETAC life cycle initiative.” In Proceedings of 2004 International IEEE Conference on the Asian Green Electronics (AGEC) (pp. 193–199). Hong Kong, China & Shenzhen, China: IEEE. doi:10.1109/AGEC.2004.1290903
  158. Murphy, C. F., Kenig, G. A., Allen, D. T., Laurent, J. P., & Dyer, D. E. (2003). Development of Parametric Material, Energy, and Emission Inventories for Wafer Fabrication in the Semiconductor Industry. Environmental Science and Technology, 37(23), 5373–5382. doi:10.1021/es034434g
  159. Schischke, K., & Griese, H. (2003). “Is small green? Life cycle aspects of technology trends in microelectronics and microsystems.” Advanced Packaging. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.546.2898&rep=rep1&type=pdf
  160. Plepys, A. (2002). The grey side of ICT. Environmental Impact Assessment Review, 22(5), 509–523. doi:10.1016/S0195-9255(02)00025-2

Last modified: 2021-04-28 16:02:25 +0200

  1. I am a member of the Technical Committee of QA&Test, so this was an “internal” keynote. 

  2. I became a co-organiser of the 2021 edition of the SICT summer school. 

  3. Here is a BibTeX file for you: sustainable-ict.bib